Description

Input & Output & Sample Input & Sample Output

HINT

题解:

题意即求不连续但间隔长度对称的回文串个数。

若si=sj,则这对字符可以作为以(i+j)/2为中心的回文串的一部分

用F[i]来表示可以做为以i/2为中心的回文串的一部分的字符对数,则以i/2为中心的回文串数为2^F[i]

则这就成了多项式乘法:先做一次a的,把字符为a的位置值赋为1,其余为0,进行一次FFT;同理做一次b的。

因为完全连续是不可以的,所以用Manacher求出这样的回文串的个数并减去。

代码:

(BZOJ上PASCAL跑得不够快,再加上这题时限只有10s,并没有AC,不知道那些用PASCAL通过的人是怎么卡常数的)

 uses math;
const
mo=;
type
xs=record
x,y:double;
end;
arr=array[..]of xs;
var
e,t:arr;
a:array[..]of arr;
n,m,i,ll,ans:longint;
ch:array[-..]of char;
b:array[-..]of longint;
z,ksm:array[..]of longint;
s:ansistring;
operator -(a,b:xs)c:xs;
begin c.x:=a.x-b.x; c.y:=a.y-b.y; end;
operator +(a,b:xs)c:xs;
begin c.x:=a.x+b.x; c.y:=a.y+b.y; end;
operator *(a,b:xs)c:xs;
begin c.x:=a.x*b.x-a.y*b.y; c.y:=a.x*b.y+a.y*b.x; end;
procedure manacher;
var k,l,i:longint;
begin
k:=-; l:=-; b[-]:=;
for i:= to m*- do
begin
if l>=i then
b[i]:=min(b[*k-i],l-i+)else b[i]:=;
while true do
begin
if ch[i+b[i]]=ch[i-b[i]] then inc(b[i])
else break;
end;
ans:=(ans+mo-(b[i]shr ))mod mo;
if i+b[i]->l then begin l:=i+b[i]-; k:=i; end;
end;
end;
procedure fft(xx:longint);
var i,j,q,k,l,c:longint;
t:xs;
begin
for i:= to n- do a[xx+,z[i]]:=a[xx,i];
xx:=xx+;
k:=n; l:=;
for i:=ll downto do
begin
k:=k shr ;
for j:= to k- do
begin
c:=j**l;
for q:= to l- do
begin
t:=e[q*k]*a[xx,c+l];
a[xx,c+l]:=a[xx,c]-t;
a[xx,c]:=a[xx,c]+t;
inc(c);
end;
end;
l:=l*;
end;
end;
begin
readln(s); m:=length(s);
ch[-]:='+';
for i:= to m- do ch[i*]:=s[i+];
ch[m*+]:='-';
manacher;
for i:= to m- do if ch[i*]='a' then a[,i].x:=;
for i:= to m- do if ch[i*]='b' then a[,i].x:=;
n:=;
while n<m* do begin n:=n*; inc(ll); end;
for i:= to n- do z[i]:=(z[i shr ]shr )or((i and )shl(ll-));
ksm[]:=; for i:= to do ksm[i]:=(ksm[i-]*)mod mo;
for i:= to n- do e[i].x:=cos(pi**i/n);
for i:= to n- do e[i].y:=sin(pi**i/n);
fft(); fft();
for i:= to n- do a[,i]:=a[,i]*a[,i]+a[,i]*a[,i];
for i:= to n- do e[i].y:=-e[i].y;
fft();
for i:= to m- do a[,i*].x:=a[,i*].x+n;
for i:= to n- do ans:=(ans+ksm[round(a[,i].x//n)]-)mod mo;
writeln(ans);
end.

PASCAL

 #include<bits/stdc++.h>
using namespace std;
int mo=;
typedef pair<double,double> pa;
pa operator + (pa a,pa b)
{ pa c; c.first=a.first+b.first; c.second=a.second+b.second; return c; }
pa operator - (pa a,pa b)
{ pa c; c.first=a.first-b.first; c.second=a.second-b.second; return c; }
pa operator * (pa a,pa b)
{ pa c; c.first=a.first*b.first-a.second*b.second; c.second=a.first*b.second+a.second*b.first; return c; }
pa a[][],e[];
char s[],s2[];
int n,ans,nn,m,ksm[],z[];
void manacher()
{
int l=,k=; z[]=;
for(int i=;i<=nn;i++)
{
if(l>=i)z[i]=min(z[*k-i],l-i);else z[i]=;
while(s2[i+z[i]+]==s2[i-z[i]-])z[i]++;
ans=(ans-(z[i]+)/)%mo; if(i+z[i]>l){ k=i; l=i+z[i]; }
}
}
void fft(int x)
{
for(int i=;i<m;i++)a[x+][z[i]]=a[x][i]; x++;
for(int k=m/,i=;i<m;i*=,k/=) for(int j=;j<m;j+=*i) for(int l=;l<i;l++)
{ pa t=e[k*l]*a[x][j+l+i]; a[x][j+l+i]=a[x][j+l]-t; a[x][j+l]=a[x][j+l]+t; }
}
int main()
{
scanf("%s",s+); n=strlen(s+); nn=; s2[]='!'; s2[]='*';
for(int i=;i<=n;i++){ nn++; s2[nn]=s[i]; nn++; s2[nn]='*'; } s2[nn+]='?';
manacher();
ksm[]=; for(int i=;i<=;i++)ksm[i]=ksm[i-]*%mo;
m=; while(m<*n)m=m*;
for(int i=;i<m;i++)z[i]=(z[i>>]>>)+(i&)*m/;
e[].first=; e[].first=cos(*acos(-)/m); e[].second=sin(*acos(-)/m);
for(int i=;i<m;i++)e[i]=e[i-]*e[];
for(int i=;i<=n;i++)if(s[i]=='a')a[][i-].first=; fft();
for(int i=;i<=n;i++)if(s[i]=='b')a[][i-].first=; fft();
for(int i=;i<m;i++)a[][i]=a[][i]*a[][i]+a[][i]*a[][i];
for(int i=;i<m;i++)e[i].second=-e[i].second;
fft();
for(int i=;i<m;i++)ans=(ans+ksm[((int)round(a[][i].first/m)+)/]-)%mo;
ans=(ans+mo)%mo;
printf("%d\n",ans);
}

C++

BZOJ3160万径人踪灭的更多相关文章

  1. [bzoj3160]万径人踪灭_FFT_Manacher

    万径人踪灭 bzoj-3160 题目大意:给定一个ab串.求所有的子序列满足:位置和字符都关于某条对称轴对称而且不连续. 注释:$1\le n\le 10^5$. 想法: 看了大爷的题解,OrzOrz ...

  2. BZOJ3160 万径人踪灭 字符串 多项式 Manachar FFT

    原文链接http://www.cnblogs.com/zhouzhendong/p/8810140.html 题目传送门 - BZOJ3160 题意 给你一个只含$a,b$的字符串,让你选择一个子序列 ...

  3. BZOJ3160 万径人踪灭(FFT+manacher)

    容易想到先统计回文串数量,这样就去掉了不连续的限制,变为统计回文序列数量. 显然以某个位置为对称轴的回文序列数量就是2其两边(包括自身)对称相等的位置数量-1.对称有啥性质?位置和相等.这不就是卷积嘛 ...

  4. BZOJ3160: 万径人踪灭

    设a[i]=bool(s[i]=='a'),b[i]=bool(s[i]=='b'),考虑a和a.b和b的卷积,由于卷积是对称的,就可以统计出不连续回文子串个数了.可能说得比较简略.再用manache ...

  5. bzoj千题计划302:bzoj3160: 万径人踪灭

    https://www.lydsy.com/JudgeOnline/problem.php?id=3160 不连续的回文串数量=所有的回文序列数量-连续的回文子串 连续的回文子串: manacher ...

  6. BZOJ3160:万径人踪灭(FFT,Manacher)

    Solution $ans=$回文子序列$-$回文子串的数目. 后者可以用$manacher$直接求. 前者设$f[i]$表示以$i$为中心的对称的字母对数. 那么回文子序列的数量也就是$\sum_{ ...

  7. BZOJ3160 万径人踪灭 【fft + manacher】

    题解 此题略神QAQ orz po神牛 由题我们知道我们要求出: 回文子序列数 - 连续回文子串数 我们记为ans1和ans2 ans2可以用马拉车轻松解出,这里就不赘述了 问题是ans1 我们设\( ...

  8. BZOJ3160: 万径人踪灭(FFT,回文自动机)

    BZOJ传送门: 解题思路: FFT在处理卷积时可以将自己与自己卷,在某一种字母上标1其他标0,做字符集次就好了. (回文就是直接对称可以联系偶函数定义理解,根据这个性质就可以将字符串反向实现字符串匹 ...

  9. 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/常用套路【入门】

    原文链接https://www.cnblogs.com/zhouzhendong/p/Fast-Fourier-Transform.html 多项式 之 快速傅里叶变换(FFT)/数论变换(NTT)/ ...

随机推荐

  1. 安卓Design包之TabLayout控件的简单使用

    Google在2015的IO大会上,给我们带来了更加详细的Material Design设计规范,同时,也给我们带来了全新的Android Design Support Library,在这个supp ...

  2. Bash简明教程--变量

    1. 前言 Bash是一门流行在*nix系统下的脚本语言.作为一门脚本语言,变量是一门语言的基本要素,在这篇教程中,我们将学习Bash中的变量是怎么表示的,以及变量相关的一些语法规则. 2. Bash ...

  3. Java进击C#——应用开发之WinForm开发

    本章简言 上一章笔者介绍了关于WinForm环境.这一章笔者将继续讲WinForm.只不过更加的面向开发了.事实就是在学习工具箱里面的控件.对于WinForm开发来讲,企业对他的要求并没有那么高.但是 ...

  4. 关于 WP 开发中.xaml 与.xaml.cs 的关系

    今天我们先来看一下在WP8.1开发中最长见到的几个文件之间的关系.比较论证,在看这个问题之前我们简单看看.NET平台其他两个不同的框架: Windows Forms 先看看Window Forms中的 ...

  5. 前端开发css实战:使用css制作网页中的多级菜单

    前端开发css实战:使用css制作网页中的多级菜单 在日常工作中,大家都会遇到一些显示隐藏类菜单,比如页头导航.二维码显示隐藏.文本提示等等......而这些效果都是可以使用纯css实现的(而且非常简 ...

  6. WangSql 1.0源码共享

    一,项目背景 现在基本上大大小小的项目都需要和数据库打交道,自然而然数据库操作会有很多地方,而使用传统ADO.NET整个流程有点麻烦,出参都需要手动转换为对象.基于以上,我们需要一个SQL执行工具,能 ...

  7. spring事务概念理解

    1.数据并发问题 脏读 A事务读取B事务尚未提交的更新数据,并在此数据的基础上操作.如果B事务回滚,则A事务读取的数据就是错误的.即读取了脏数据或者错误数据. 不可重复组 A事务先后读取了B事务提交[ ...

  8. 1.JAVA基础复习——计算机基础与环境变量配置

    软件开发的了解 软件开发: 软件:一系列按照特定组织的计算机数据和指令的集合. 开发:制作软件. 程序:一系列有序指令的集合. 人机交互 人机交互的方式有两种:图形化界面和命令行方式. 图形化界面:简 ...

  9. GDAL生成Erdas Imagine

    GDAL原生支持超过100种栅格数据类型,涵盖所有主流GIS与RS数据格式,包括•  ArcInfo grids, ArcSDE raster, Imagine, Idrisi, ENVI, GRAS ...

  10. ViewPager轮播图

    LoopViewPagerLayout无限轮播 项目地址:https://github.com/why168/LoopViewPagerLayout 支持三种动画: 支持修改轮播的速度: 支持修改滑动 ...