HDU 6092`Rikka with Subset 01背包变形
Rikka with Subset
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1846 Accepted Submission(s): 896
Yuta has n positive A1−An and their sum is m. Then for each subset S of A, Yuta calculates the sum of S.
Now, Yuta has got 2n numbers between [0,m]. For each i∈[0,m], he counts the number of is he got as Bi.
Yuta shows Rikka the array Bi and he wants Rikka to restore A1−An.
It is too difficult for Rikka. Can you help her?
For each testcase, the first line contains two numbers n,m(1≤n≤50,1≤m≤104).
The second line contains m+1 numbers B0−Bm(0≤Bi≤2n).
It is guaranteed that there exists at least one solution. And if there are different solutions, print the lexicographic minimum one.
2 3
1 1 1 1
3 3
1 3 3 1
1 1 1
In the first sample, A is [1,2]. A has four subsets [],[1],[2],[1,2] and the sums of each subset are 0,1,2,3. So B=[1,1,1,1]
#include<bits/stdc++.h>
#define db double
#define ll long long
#define ci(x) scanf("%d",&x)
#define cd(x) scanf("%lf",&x)
#define cl(x) scanf("%lld",&x)
#define pi(x) printf("%d\n",x)
#define pd(x) printf("%f\n",x)
#define pl(x) printf("%lld\n",x)
#define fr(i,a,b) for(int i=a;i<=b;i++)
using namespace std;
const int N=1e5+;
const int mod=1e9+;
const int MOD=mod-;
const db eps=1e-;
const int inf = 0x3f3f3f3f;
int b[N],f[N],a[N];
int main()
{
// ios::sync_with_stdio(false);
// cin.tie(0);
int t;
ci(t);
for(int ii=;ii<=t;ii++)
{
int n,m,c=;
ci(n),ci(m);
for(int i=;i<=m;i++) ci(b[i]);
memset(f,,sizeof(f));
f[]=;
for(int i=;i<=m;i++){//我们要加入的数字i
int v=b[i]-f[i];//加入v个i
for(int j=;j<v;j++){
a[++c]=i;
for(int k=m;k>=i;k--){
f[k]+=f[k-i];//更新当前组合的种数
}
}
}
for(int i=;i<=n;i++){
printf("%d%c",a[i],i==n?'\n':' ');
}
}
}
HDU 6092`Rikka with Subset 01背包变形的更多相关文章
- hdu 6092 Rikka with Subset 01背包 思维
dp[i][j]表示前i个元素,子集和为j的个数.d[i][j] = d[i][j] + d[i-1][j-k] (第i个元素的值为k).这里可以优化成一维数组 比如序列为 1 2 3,每一步的dp值 ...
- HDU 2639 Bone Collector II(01背包变形【第K大最优解】)
Bone Collector II Time Limit: 5000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others ...
- hdu 6092 Rikka with Subset(逆向01背包+思维)
Rikka with Subset Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others ...
- HDU 6092 Rikka with Subset
Rikka with Subset Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others ...
- hdu–2369 Bone Collector II(01背包变形题)
题意:求解01背包价值的第K优解. 分析: 基本思想是将每个状态都表示成有序队列,将状态转移方程中的max/min转化成有序队列的合并. 首先看01背包求最优解的状态转移方程:\[dp\left[ j ...
- hdu 6092 Rikka with Subset (集合计数,01背包)
Problem Description As we know, Rikka is poor at math. Yuta is worrying about this situation, so he ...
- hdu 6092 Rikka with Subset(多重背包)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6092 #include <cstdio> #include <iostream> ...
- HDU 6092 Rikka with Subset(dp)
http://acm.hdu.edu.cn/showproblem.php?pid=6092 题意: 给出两个数组A和B,A数组一共可以有(1<<n)种不同的集合组合,B中则记录了每个数出 ...
- 2017 ACM暑期多校联合训练 - Team 5 1008 HDU 6092 Rikka with Subset (找规律)
题目链接 Problem Description As we know, Rikka is poor at math. Yuta is worrying about this situation, s ...
随机推荐
- jenkins 多选框
背景jenkins自带的参数化不支持多选框,不过有插件支持:Extended Choice Parameter Plug-In插件地址: https://plugins.jenkins.io/exte ...
- angular中封装fancyBox(图片预览)
首先在官网下载最新版的fancyBox(一定要去最新网站,以前依赖的jquery版本偏低),附上链接:http://fancyapps.com/fancybox/3/ 然后在项目中引用jquery,然 ...
- 关于sys.argv
sys.argv[]用来获取命令行参数,sys.argv[0]表示代码本身的文件路径.比如在命令行输入‘python test.py -version',sys.argv[0]的值即为test.py, ...
- [2014-08-24]为 Xamarin Studio 创建的 Asp.Net Mvc 项目配置 gitignore
今天在尝试 Mac 下使用 Xamarin Studio (以下简称XS) 开发 Asp.Net Mvc 项目,发现XS没启用版本控制,故自己去命令行下使用 git init,想到需要一个.gitig ...
- MongoDB学习之——安装
MongoDB安装 说明: 本次安装教程: 版本:mongoDB-3.2.4 安装环境:windows 10 ,64位操作系统 准备:安装包.Robomongo(客户端用于查看mongoDB里面的数据 ...
- Nginx + Memcached 实现Session共享的负载均衡
session共享 我们在做站点的试试,通常需要保存用户的一些基本信息,比如登录就会用到Session:当使用Nginx做负载均衡的时候,用户浏览站点的时候会被分配到不同的服务器上,此时如果登录后Se ...
- UWP 手绘视频创作工具技术分享系列
开篇先来说一下写这篇文章的初衷. 初到来画,通读了来画 UWP App 的代码,发现里面确实有很多比较高深的技术点,同时也是有很多问题的,扩展性,耦合,性能,功能等等.于是我们决定从头重构这个产品,做 ...
- nginx正向代理
通过把Nginx设置为正向代理,我们就可以在局域网中用运行着Nginx的主机作为正向代理服务器了.那什么是正向代理和反向代理呢?正向代理和反向代理-百度百科 正向代理:如果把局域网外的Internet ...
- ActiveMQ持久化消息的三种方式
详见:http://blog.yemou.net/article/query/info/tytfjhfascvhzxcyt362 本文只介绍三种方式,分别是持久化为文件,MYSql,Oracle.下面 ...
- Java log4j使用
log4j下载地址: http://logging.apache.org/log4j/1.2/download.html 本人用的是log4j-1.2.17.jar的jar包. 接下来我们配置下一lo ...