<题目链接>

<转载于 >>> >

题目大意:

RSA是个很强大的加密数据的工具,对RSA系统的描述如下:

选择两个大素数p、q,计算n = p * q,F(n) = (p-1)*(q-1),选择一个整数e,使得gcd(e,F(n)) = 1,

e是公匙,计算d使得d * e mod F(n) = 1 mod F(n),d是私匙。加密数据的方法为

C = E(m) = m^e mod n

解密数据的方法为

M = D(c) = c^d mod n

其中,c是密文中字母的ASCII的值;m是明文中字母的ASCII的值。

现在问题来了,给你p、q、e和一些密文,请把密文翻译成明文。

解题分析:

根据p和q,计算出n = p * q,F(n) = (p-1)*(q-1),用扩展欧几里得方法求出e关于F(n)的逆元d,根据

公式 M= c^d mod n,解出明文。

#include <cstdio>

#define ll long long 

ll exgcd(ll a, ll b, ll &x, ll &y)
{
if (!b)
{
x = ; y = ;
return a;
}
ll R = exgcd(b, a%b, y, x);
y -= a / b * x;
return R;
} ll pow(ll a, ll b,ll mod)
{
ll ans = ;
while (b)
{
if (b & )
{
ans = (ans*a) % mod;
}
b >>= ;
a = (a*a) % mod; }
return ans;
} int main()
{
ll q, p, e, l;
while (scanf("%lld %lld %lld %lld", &p, &q, &e, &l) != EOF)
{
ll n = q * p;
ll fn = (q-)*(p-); ll d, y;
ll gcd=exgcd(e, fn, d, y); d = (d%fn + fn) % fn; //用扩展欧几里得方法求出e关于F(n)的逆元d for (ll i = ; i < l; i++)
{
ll cal; scanf("%lld", &cal); ll ans = pow(cal, d,n);
printf("%c", ans%); //注意,这里是 %128
}
printf("\n");
}
return ;
}

2018-08-12

HDU1211 密文解锁 【扩展欧几里得】【逆元】的更多相关文章

  1. Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined) C.Ray Tracing (模拟或扩展欧几里得)

    http://codeforces.com/contest/724/problem/C 题目大意: 在一个n*m的盒子里,从(0,0)射出一条每秒位移为(1,1)的射线,遵从反射定律,给出k个点,求射 ...

  2. UVA 12169 Disgruntled Judge 枚举+扩展欧几里得

    题目大意:有3个整数 x[1], a, b 满足递推式x[i]=(a*x[i-1]+b)mod 10001.由这个递推式计算出了长度为2T的数列,现在要求输入x[1],x[3],......x[2T- ...

  3. UVA 10090 Marbles 扩展欧几里得

    来源:http://www.cnblogs.com/zxhl/p/5106678.html 大致题意:给你n个球,给你两种盒子.第一种盒子每个盒子c1美元,可以恰好装n1个球:第二种盒子每个盒子c2元 ...

  4. POJ 1061 青蛙的约会 扩展欧几里得

    扩展欧几里得模板套一下就A了,不过要注意刚好整除的时候,代码中有注释 #include <iostream> #include <cstdio> #include <cs ...

  5. 【64测试20161112】【Catalan数】【数论】【扩展欧几里得】【逆】

    Problem: n个人(偶数)排队,排两行,每一行的身高依次递增,且第二行的人的身高大于对应的第一行的人,问有多少种方案.mod 1e9+9 Solution: 这道题由1,2,5,14 应该想到C ...

  6. poj 2891 扩展欧几里得迭代解同余方程组

    Reference: http://www.cnblogs.com/ka200812/archive/2011/09/02/2164404.html 之前说过中国剩余定理传统解法的条件是m[i]两两互 ...

  7. poj 2142 扩展欧几里得解ax+by=c

    原题实际上就是求方程a*x+b*y=d的一个特解,要求这个特解满足|x|+|y|最小 套模式+一点YY就行了 总结一下这类问题的解法: 对于方程ax+by=c 设tm=gcd(a,b) 先用扩展欧几里 ...

  8. poj 1061 扩展欧几里得解同余方程(求最小非负整数解)

    题目可以转化成求关于t的同余方程的最小非负数解: x+m*t≡y+n*t (mod L) 该方程又可以转化成: k*L+(n-m)*t=x-y 利用扩展欧几里得可以解决这个问题: eg:对于方程ax+ ...

  9. Codeforces7C 扩展欧几里得

    Line Time Limit: 1000MS   Memory Limit: 262144KB   64bit IO Format: %I64d & %I64u Submit Status ...

随机推荐

  1. oracle锁表

    一.锁表的处理 Oracle锁表比较简单,查询锁表的session杀掉就可以了. 1.以下几个为相关表 SELECT * FROM V$LOCK; SELECT * FROM V$SQLAREA; S ...

  2. POST 上传 JSON 数据

    // // ViewController.m // 03-post上传json // // Created by jerry on 15/10/10. // Copyright (c) 2015年 j ...

  3. 2017-2018-2 165X 『Java程序设计』课程每周成绩公布

    2017-2018-2 165X 『Java程序设计』课程 每周成绩公布 本博客将跟随教学进度不定期更新,每次更新后将在课程群公布.如对成绩有疑问,请于公布成绩后的1天之内联系助教,进行审核确认. - ...

  4. ubuntu16.04+caffe+python接口配置

    在Windows上用了一个学期的caffe了.深感各种不便,于是乎这几天在ubuntu上配置了caffe和它的python接口,现在记录配置过程,亲测可用: 环境:ubuntu16.04 , caff ...

  5. Python3学习笔记08-tuple

    元组与列表类似,不同之处在于元组的元素不能修改 元组使用小括号,列表使用方括号 元组创建很简单,只需要在括号中添加元素,并使用逗号隔开即可 tup1 = ('Google', 'Runoob', 19 ...

  6. IIS8.5 运行WCF

    背景 这是一个项目给其它项目提供接口,其实现在哪有用WCF的了,都是restful.不过.net在这方面还是不错,比java强些,java竟然很多采用自己解析xml方式来做Web服务.难以理解. 但是 ...

  7. PHP框架CodeIgniter--URL去除index.php

    今天学习CodeIgniter简称CI的第一天,记录下学习心得. CI中国https://codeigniter.org.cn/user_guide/general/urls.html?highlig ...

  8. python 运行日志logging代替方案

    以下是自己写的 记录日志的代码.(和logging不搭嘎,如果如要学loggging模块,本文末尾有他人的链接.) # prtlog.py ############################## ...

  9. Day5----------------------文件合并与文件归档

    一.文件合并 1.命令: >:覆盖式 >>:追加式 例如:cat /etc/passwd > a.txt      把/etc/passwd下的内容合并到a.txt内,若没有文 ...

  10. from opencv image to PIL image and reverse

    import cv2 import numpy as np from PIL import Image img = cv2.imread("path/to/img.png") # ...