HDU1211 密文解锁 【扩展欧几里得】【逆元】
<题目链接>
<转载于 >>> >
题目大意:
RSA是个很强大的加密数据的工具,对RSA系统的描述如下:
选择两个大素数p、q,计算n = p * q,F(n) = (p-1)*(q-1),选择一个整数e,使得gcd(e,F(n)) = 1,
e是公匙,计算d使得d * e mod F(n) = 1 mod F(n),d是私匙。加密数据的方法为
C = E(m) = m^e mod n
解密数据的方法为
M = D(c) = c^d mod n
其中,c是密文中字母的ASCII的值;m是明文中字母的ASCII的值。
现在问题来了,给你p、q、e和一些密文,请把密文翻译成明文。
解题分析:
根据p和q,计算出n = p * q,F(n) = (p-1)*(q-1),用扩展欧几里得方法求出e关于F(n)的逆元d,根据
公式 M= c^d mod n,解出明文。
#include <cstdio> #define ll long long ll exgcd(ll a, ll b, ll &x, ll &y)
{
if (!b)
{
x = ; y = ;
return a;
}
ll R = exgcd(b, a%b, y, x);
y -= a / b * x;
return R;
} ll pow(ll a, ll b,ll mod)
{
ll ans = ;
while (b)
{
if (b & )
{
ans = (ans*a) % mod;
}
b >>= ;
a = (a*a) % mod; }
return ans;
} int main()
{
ll q, p, e, l;
while (scanf("%lld %lld %lld %lld", &p, &q, &e, &l) != EOF)
{
ll n = q * p;
ll fn = (q-)*(p-); ll d, y;
ll gcd=exgcd(e, fn, d, y); d = (d%fn + fn) % fn; //用扩展欧几里得方法求出e关于F(n)的逆元d for (ll i = ; i < l; i++)
{
ll cal; scanf("%lld", &cal); ll ans = pow(cal, d,n);
printf("%c", ans%); //注意,这里是 %128
}
printf("\n");
}
return ;
}
2018-08-12
HDU1211 密文解锁 【扩展欧几里得】【逆元】的更多相关文章
- Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined) C.Ray Tracing (模拟或扩展欧几里得)
http://codeforces.com/contest/724/problem/C 题目大意: 在一个n*m的盒子里,从(0,0)射出一条每秒位移为(1,1)的射线,遵从反射定律,给出k个点,求射 ...
- UVA 12169 Disgruntled Judge 枚举+扩展欧几里得
题目大意:有3个整数 x[1], a, b 满足递推式x[i]=(a*x[i-1]+b)mod 10001.由这个递推式计算出了长度为2T的数列,现在要求输入x[1],x[3],......x[2T- ...
- UVA 10090 Marbles 扩展欧几里得
来源:http://www.cnblogs.com/zxhl/p/5106678.html 大致题意:给你n个球,给你两种盒子.第一种盒子每个盒子c1美元,可以恰好装n1个球:第二种盒子每个盒子c2元 ...
- POJ 1061 青蛙的约会 扩展欧几里得
扩展欧几里得模板套一下就A了,不过要注意刚好整除的时候,代码中有注释 #include <iostream> #include <cstdio> #include <cs ...
- 【64测试20161112】【Catalan数】【数论】【扩展欧几里得】【逆】
Problem: n个人(偶数)排队,排两行,每一行的身高依次递增,且第二行的人的身高大于对应的第一行的人,问有多少种方案.mod 1e9+9 Solution: 这道题由1,2,5,14 应该想到C ...
- poj 2891 扩展欧几里得迭代解同余方程组
Reference: http://www.cnblogs.com/ka200812/archive/2011/09/02/2164404.html 之前说过中国剩余定理传统解法的条件是m[i]两两互 ...
- poj 2142 扩展欧几里得解ax+by=c
原题实际上就是求方程a*x+b*y=d的一个特解,要求这个特解满足|x|+|y|最小 套模式+一点YY就行了 总结一下这类问题的解法: 对于方程ax+by=c 设tm=gcd(a,b) 先用扩展欧几里 ...
- poj 1061 扩展欧几里得解同余方程(求最小非负整数解)
题目可以转化成求关于t的同余方程的最小非负数解: x+m*t≡y+n*t (mod L) 该方程又可以转化成: k*L+(n-m)*t=x-y 利用扩展欧几里得可以解决这个问题: eg:对于方程ax+ ...
- Codeforces7C 扩展欧几里得
Line Time Limit: 1000MS Memory Limit: 262144KB 64bit IO Format: %I64d & %I64u Submit Status ...
随机推荐
- CF875D High Cry
传送门 题目要求合法的区间个数,这里考虑用总区间个数减去不合法的个数 假设某个数为区间最大值,那么包含这个数的最长区间内,所有数小于他并且所有数没有这个最大值没有的二进制位,可以按位考虑每个数\(i\ ...
- Maven打包编译找不到com.sun.crypto.provider.SunJCE类
Maven配置 <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>mav ...
- PWA,SPA,MPA
PWA渐进式应用 特点: 不会部署到应用商店. 离线应用,通过设备进行存储规划 在发布了pwa的网站,浏览器会询问是否安装app到主屏. 方便分享,通过url. 可推送通知 . 通过service w ...
- django学习~forms
一 简介 今天咱们来聊聊 django强大的表单功能二 Froms作用 1 自动生成HTML表单元素 2 检查表单数据的合法性 3 如果验证错误,重新显示表单(数据不会重置) 4 数据 ...
- Java读取Txt封装到对象中——(三)
JavaBean package bean; public class Question { private String timu; //题干 private String leixing; //类 ...
- R-TREE
原文地址:http://blog.csdn.net/sunmenggmail/article/details/8122743 1984年,加州大学伯克利分校的Guttman发表了一篇题为“R-tree ...
- jmeter之使用代理录制脚本
从loadrunner到jmeter,录制压力测试脚本好像都只支持IE,近来才知道jmeter还有自带的录制脚本元件, 且支持IE.Chrome及Firefox等多种浏览器.这里就记录一下通过jmet ...
- mysql更新字段值提示You are using safe update mode and you tried to update a table without a WHERE that uses a KEY column To disable safe mode
1 引言 当更新字段缺少where语句时,mysql会提示一下错误代码: Error Code: 1175. You are using safe update mode and you tried ...
- css系列之box-sizing
转载自:http://zh.learnlayout.com/box-sizing.html 人们慢慢的意识到传统的盒子模型不直接,所以他们新增了一个叫做 box-sizing 的CSS属性.当你设置一 ...
- 中文多分类 BERT
直接把自己的工作文档导入的,由于是在外企工作,所以都是英文写的 Steps: git clone https://github.com/google-research/bert prepare dat ...