【ZH奶酪】如何用Python计算最长公共子序列和最长公共子串
1. 什么是最长公共子序列?什么是最长公共子串?
1.1. 最长公共子序列(Longest-Common-Subsequences,LCS)
最长公共子序列(Longest-Common-Subsequences,LCS)是一个在一个序列集合中(通常为两个序列)用来查找所有序列中最长子序列的问题。这与查找最长公共子串的问题不同的地方是:子序列不需要在原序列中占用连续的位置
。
最长公共子序列问题是一个经典的计算机科学问题,也是数据比较程序,比如Diff工具,和生物信息学应用的基础。它也被广泛地应用在版本控制,比如Git用来调和文件之间的改变。
1.2 最长公共子串(Longest-Common-Substring,LCS)
最长公共子串(Longest-Common-Substring,LCS)问题是寻找两个或多个已知字符串最长的子串。此问题与最长公共子序列问题的区别在于子序列不必是连续的,而子串却必须是
连续的。
2. 如何求解最长公共子序列?
例如序列str_a=world,str_b=wordl。序列wo是str_a和str_b的一个公共子序列,但是不是str_a和str_b的最长公共子序列,子序列word是str_a和str_b的一个LCS,序列worl也是。
暴力查找?
寻找LCS的一种方法是枚举X所有的子序列,然后注意检查是否是Y的子序列,并随时记录发现的最长子序列。假设X有m个元素,则X有2^m个子序列,指数级的时间,对长序列不实际。
分析问题,设str_a=<x1,x2,…,xm>和str_b=<y1,y2,…,yn>为两个序列,LCS(str_a,str_b)表示str_a和str_b的一个最长公共子序列,可以看出
如果str_a[m] == str_b[n],则LCS (str_a, str_b) = str_a[m] + LCS(str_a[1:m-1],str_b[1:n-1])
如果str_a[m] != str_b[n],则LCS(str_a,str_b)= max{LCS(str_a[1:m-1], str_b), LCS (str_a, str_b[n-1])}
LCS问题也具有重叠子问题性质:为找出LCS(str_a,str_b),可能需要找LCS(str_a[1:m-1], str_b)以及LCS (str_a, str_b[n-1])。但这两个子问题都包含着LCS(str_a[1:m-1],str_b[1:n-1]).
2.1 基于递归的方法
根据上边分析结果,可以写出简洁易懂的递归方法。
def recursive_lcs(str_a, str_b):
if len(str_a) == 0 or len(str_b) == 0:
return 0
if str_a[0] == str_b[0]:
return recursive_lcs(str_a[1:], str_b[1:]) + 1
else:
return max([recursive_lcs(str_a[1:], str_b), recursive_lcs(str_a, str_b[1:])])
print recursive_lcs(str_a, str_b)
2.2 基于自底向上动态规划的方法
根据上述分析问题,动态规划递推公式也非常明显,可以写出动态规划代码:
def bottom_up_dp_lcs(str_a, str_b):
"""
longest common subsequence of str_a and str_b
"""
if len(str_a) == 0 or len(str_b) == 0:
return 0
dp = [[0 for _ in range(len(str_b) + 1)] for _ in range(len(str_a) + 1)]
for i in range(1, len(str_a) + 1):
for j in range(1, len(str_b) + 1):
if str_a[i-1] == str_b[j-1]:
dp[i][j] = dp[i-1][j-1] + 1
else:
dp[i][j] = max([dp[i-1][j], dp[i][j-1]])
print "length of LCS is :",dp[len(str_a)][len(str_b)]
# 输出最长公共子序列
i, j = len(str_a), len(str_b)
LCS = ""
while i > 0 and j > 0:
if str_a[i-1] == str_b[j-1] \ # 这里一定要比较a[i-1]和b[j-1]是否相等
and dp[i][j] == dp[i-1][j-1] + 1:
LCS = str_a[i - 1] + LCS
i, j = i-1, j-1
continue
if dp[i][j] == dp[i-1][j]:
i, j = i-1, j
continue
if dp[i][j] == dp[i][j-1]:
i, j = i, j-1
continue
print "LCS is :", LCS
bottom_up_dp_lcs(str_a, str_b)
2.3 降低空间复杂度的动态规划算法
根据上述问题分析以及2.2中的dp矩阵可以看出,其实每一步的求解,只和三个元素有关:左边的元素,上边的元素,左上角的元素。因此我们可以进行空间优化,用一维数组代替二维矩阵。
def space_efficient_lcs(str_a, str_b):
"""
longest common subsequence of str_a and str_b, with O(n) space complexity
"""
if len(str_a) == 0 or len(str_b) == 0:
return 0
dp = [0 for _ in range(len(str_b) + 1)]
for i in range(1, len(str_a) + 1):
left_up = 0
dp[0] = 0
for j in range(1, len(str_b) + 1):
left = dp[j-1]
up = dp[j]
if str_a[i-1] == str_b[j-1]:
dp[j] = left_up + 1
else:
dp[j] = max([left, up])
left_up = up
print dp[len(str_b)]
space_efficient_lcs(str_a, str_b)
3. 如何求解最长公共子串?
最长公共子串比最长公共子序列的递推公式要简单一些。
dp[i][j]的含义也发生了变化:
- 在最长公共子序列中,dp[i][j]表示str_a[1:i]和str_b[1:j]的最长公共子序列,是从str_a的1和str_b的1开始计算的,即整个字符串的起始位置。
- 在最长公共子串中,dp[i][j]表示str_a[i':i]和str_b[j':j]的最长公共子串,因为str_a和str_b可能存在多个公共子串,所以i'和j'分别表示
当前公共子串
的起始位置。
也就是说:
- 当str_a[i] == str_b[j]时,dp[i][j] = dp[i-1][j-1]+ 1;
- 当str_a[i] != str_b[j]时,dp[i][j] = 0,即开始计算新的公共子串。
和最长公共子序列不同的是,在最长公共子串问题中,dp[m][n]不一定是最终结果,比如“abcdxy”和“abcfxy”,dp[m][n]存储的是公共子串“xy”的长度,而不是公共子串“abc”的长度,所以需要一个变量单独记录最长子串的长度。
3.1 动态规划算法
def bottom_up_dp_lcs(str_a, str_b):
"""
longest common substring of str_a and str_b
"""
if len(str_a) == 0 or len(str_b) == 0:
return 0
dp = [[0 for _ in range(len(str_b) + 1)] for _ in range(len(str_a) + 1)]
max_len = 0
lcs_str = ""
for i in range(1, len(str_a) + 1):
for j in range(1, len(str_b) + 1):
if str_a[i-1] == str_b[j-1]:
dp[i][j] = dp[i-1][j-1] + 1
max_len = max([max_len, dp[i][j]])
if max_len == dp[i][j]:
lcs_str = str_a[i-max_len:i]
else:
dp[i][j] = 0
print "length of LCS is :",max_len
print "LCS :",lcs_str
bottom_up_dp_lcs(str_a, str_b)
3.2 优化空间复杂度的动态规划算法
def space_efficient_lcs(str_a, str_b):
"""
longest common substring of str_a and str_b, with O(n) space complexity
"""
if len(str_a) == 0 or len(str_b) == 0:
return 0
max_len = 0
dp = [0 for _ in range(len(str_b) + 1)]
for i in range(1, len(str_a) + 1):
left_up = 0
for j in range(1, len(str_b) + 1):
up = dp[j]
if str_a[i-1] == str_b[j-1]:
dp[j] = left_up + 1
max_len = max([max_len, dp[j]])
else:
dp[j] = 0
left_up = up
print max_len
space_efficient_lcs(str_a, str_b)
【ZH奶酪】如何用Python计算最长公共子序列和最长公共子串的更多相关文章
- 用Python计算最长公共子序列和最长公共子串
如何用Python计算最长公共子序列和最长公共子串 1. 什么是最长公共子序列?什么是最长公共子串? 1.1. 最长公共子序列(Longest-Common-Subsequences,LCS) 最长公 ...
- 动态规划1——最长递增子序列、最长公共子序列、最长公共子串(python实现)
目录 1. 最长递增序列 2. 最长公共子序列 3. 最长公共子串 1. 最长递增序列 给定一个序列,找出其中最长的,严格递增的子序列的长度(不要求连续). 解法一:动态规划 通过一个辅助数组记录每一 ...
- [Python]最长公共子序列 VS 最长公共子串[动态规划]
前言 由于原微软开源的基于古老的perl语言的Rouge依赖环境实在难以搭建,遂跟着Rouge论文的描述自行实现. Rouge存在N.L.S.W.SU等几大子评估指标.在复现Rouge-L的函数时,便 ...
- [Data Structure] LCSs——最长公共子序列和最长公共子串
1. 什么是 LCSs? 什么是 LCSs? 好多博友看到这几个字母可能比较困惑,因为这是我自己对两个常见问题的统称,它们分别为最长公共子序列问题(Longest-Common-Subsequence ...
- 动态规划 最长公共子序列 LCS,最长单独递增子序列,最长公共子串
LCS:给出两个序列S1和S2,求出的这两个序列的最大公共部分S3就是就是S1和S2的最长公共子序列了.公共部分 必须是以相同的顺序出现,但是不必要是连续的. 选出最长公共子序列.对于长度为n的序列, ...
- 最长公共子序列与最长公共字串 (dp)转载http://blog.csdn.net/u012102306/article/details/53184446
1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...
- O(n log n)求最长上升子序列与最长不下降子序列
考虑dp(i)表示新上升子序列第i位数值的最小值.由于dp数组是单调的,所以对于每一个数,我们可以二分出它在dp数组中的位置,然后更新就可以了,最终的答案就是dp数组中第一个出现正无穷的位置. 代码非 ...
- 最长公共子序列PK最长公共子串
1.先科普下最长公共子序列 & 最长公共子串的区别: 找两个字符串的最长公共子串,这个子串要求在原字符串中是连续的.而最长公共子序列则并不要求连续. (1)递归方法求最长公共子序列的长度 1) ...
- 动态规划(一)——最长公共子序列和最长公共子串
注: 最长公共子序列采用动态规划解决,由于子问题重叠,故采用数组缓存结果,保存最佳取值方向.输出结果时,则自顶向下建立二叉树,自底向上输出,则这过程中没有分叉路,结果唯一. 最长公共子串采用参考串方式 ...
随机推荐
- hdu 6125 状压dp+分组
一道玄学题... 其实一开始想的是对的,优化一下就好了 首先我们会发现,乘积不能被完全平方数整除等价于所有因子的每个质因子个数和都至多为1 可是500以内的质数很多,全找出来会爆炸的 可我们会发现,如 ...
- python接口自动化测试五:乱码、警告、错误处理
乱码: 以content字节流输出,解码成utf-8: print(r.encoding) # 查看返回的编码格式: 去掉Warning警告: import urllib3 urllib3.dis ...
- PyCharm 新建文件时默认添加作者时间等
将内容添加到Python Script 右侧的文本框中: 路径: File → Setting → Editor → File and Code Templates → Python Script # ...
- python 全栈开发,Day58(bootstrap组件,bootstrap JavaScript 插件,后台模板,图表插件,jQuery插件库,Animate.css,swiper,运行vue项目)
一.bootstrap组件 无数可复用的组件,包括字体图标.下拉菜单.导航.警告框.弹出框等更多功能. 组件和插件的区别? 插件:一个功能,比如js文件 组件:html css js 组件包含插件 面 ...
- .NetCore下使用Prometheus实现系统监控和警报 (六)进阶Grafana集成自定义收集指标
Prometheus中包含了很多收集指标,那么我们怎来在Grafana中来使用呢? 接下来我们还是以之前自定义的来演示如图:我们在Prometheus中已经可以看到这个之前我们自定义的类型了 关于Gr ...
- Django2.0 path与Django1.x版本url正则匹配问题
2.0内的path匹配正则时候无效, 导入re_path即可匹配正则
- 让我们了解 Ceph 分布式存储
前言 最近在学习 kubernetes 过程中,想实现 pod 数据的持久化.在调研的过程中,发现 ceph 在最近几年发展火热,也有很多案例落地企业.在选型方面,个人更加倾向于社区火热的项目,Glu ...
- 文档工具GitBook使用
一.登陆注册 地址:https://www.gitbook.com/ 1.gitbook可使用github账号登录,如果已经注册github可以直接使用github账号登录 2.如果是github账号 ...
- 8.Django-form组件
1.form组件的校验功能 文件formsdemo models from django.db import models # Create your models here. class UserI ...
- adb命令大全
废话不多说,直接adb -help查看所有命令然后翻译 -a - directs adb to listen on all interfaces for a connection 指导adb监听连接的 ...