Description

给你一个n个点的森林,要求支持m个操作:

1.连接两个点 x,y

2.询问若断掉 x,y这条边,两点所在联通块乘积的大小

Hint:

\(n,m<=10^5\)

Solution:

\(LCT\)维护子树\(size\):

对于每一个点维护\(b[i]\)表示\(i\)点的虚子树大小

每次\(access\)动态更新\(b[i]\)

\(sz[]\)便可以直接\(push\_up\)

#include<bits/stdc++.h>
using namespace std;
const int mxn=1e5+5;
int n,m,t[mxn],fa[mxn],st[mxn],sz[mxn],b[mxn],rev[mxn],val[mxn],ch[mxn][2]; namespace lct {
int isnotrt(int x) {
return ch[fa[x]][0]==x||ch[fa[x]][1]==x;
};
void push_up(int x) {
t[x]=t[ch[x][0]]^t[ch[x][1]]^val[x];
sz[x]=sz[ch[x][0]]+sz[ch[x][1]]+b[x]+1;
};
void push_down(int x) {
if(rev[x]) {
rev[ch[x][0]]^=1,rev[ch[x][1]]^=1;
swap(ch[ch[x][0]][0],ch[ch[x][0]][1]);
swap(ch[ch[x][1]][0],ch[ch[x][1]][1]);
rev[x]=0;
}
}
void rotate(int x) {
int y=fa[x],z=fa[y],tp=ch[y][1]==x;
if(isnotrt(y)) ch[z][ch[z][1]==y]=x;/**/ fa[x]=z;
ch[y][tp]=ch[x][tp^1],fa[ch[x][tp^1]]=y;
ch[x][tp^1]=y,fa[y]=x;
push_up(y),push_up(x);
};
void splay(int x) {
int tp=x,s=0; st[++s]=tp;
while(isnotrt(tp)) st[++s]=tp=fa[tp];
while(s) push_down(st[s--]);
while(isnotrt(x)) {
int y=fa[x],z=fa[y];
if(isnotrt(y))
(ch[y][1]==x)^(ch[z][1]==y)?rotate(x):rotate(y);
rotate(x);
}
};
void access(int x) {
for(int y=0;x;x=fa[y=x])
splay(x),b[x]+=sz[ch[x][1]],b[x]-=sz[ch[x][1]=y],push_up(x);
};
void makert(int x) {
access(x); splay(x);
swap(ch[x][0],ch[x][1]);
rev[x]^=1;
};
int findrt(int x) {
access(x); splay(x);
while(ch[x][0]) push_down(x),x=ch[x][0];
splay(x); return x;
};
void split(int x,int y) {
makert(x); access(y); splay(y);
};
void link(int x,int y) {
split(x,y);
fa[x]=y,b[y]+=sz[x],push_up(y); //因为维护的是子树信息,故为了防止对其他节点信息产生影响,合并时两点都必须splay到根
};
}
using namespace lct; int main()
{
scanf("%d%d",&n,&m); int x,y; char opt[10];
while(m--) {
scanf("%s %d %d",opt,&x,&y);
if(opt[0]=='Q') {
makert(x); access(y); splay(y);
printf("%lld\n",1ll*(sz[y]-sz[x])*(sz[x]));
}
else if(opt[0]=='A') link(x,y);
}
return 0;
}

[BJOI2014]大融合的更多相关文章

  1. [BZOJ4530][Bjoi2014]大融合 LCT + 启发式合并

    [BZOJ4530][Bjoi2014]大融合 试题描述 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是 ...

  2. BZOJ:4530: [Bjoi2014]大融合

    4530: [Bjoi2014]大融合 拿这题作为lct子树查询的练手.本来以为这会是一个大知识点,结果好像只是一个小技巧? 多维护一个虚边连接着的子树大小即可. #include<cstdio ...

  3. BZOJ_4530_[Bjoi2014]大融合_LCT

    BZOJ_4530_[Bjoi2014]大融合_LCT Description 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个 ...

  4. P4219 [BJOI2014]大融合(LCT)

    P4219 [BJOI2014]大融合 对于每个询问$(u,v)$所求的是 ($u$的虚边子树大小+1)*($v$的虚边子树大小+1) 于是我们再开个$si[i]$数组表示$i$的虚边子树大小,维护一 ...

  5. 洛谷 P4219 [BJOI2014]大融合 解题报告

    P4219 [BJOI2014]大融合 题目描述 小强要在\(N\)个孤立的星球上建立起一套通信系统.这套通信系统就是连接\(N\)个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的 ...

  6. 洛谷P4219 - [BJOI2014]大融合

    Portal Description 初始有\(n(n\leq10^5)\)个孤立的点,进行\(Q(Q\leq10^5)\)次操作: 连接边\((u,v)\),保证\(u,v\)不连通. 询问有多少条 ...

  7. [BJOI2014]大融合(Link Cut Tree)

    [BJOI2014]大融合(Link Cut Tree) 题面 给出一棵树,动态加边,动态查询通过每条边的简单路径数量. 分析 通过每条边的简单路径数量显然等于边两侧节点x,y子树大小的乘积. 我们知 ...

  8. [bzoj4530][Bjoi2014]大融合_LCT

    大融合 bzoj-4530 Bjoi-2014 题目大意:n个点,m个操作,支持:两点连边:查询两点负载:负载.边(x,y)的负载就是将(x,y)这条边断掉后能和x联通的点的数量乘以能和y联通的点的数 ...

  9. 【bzoj4530】[Bjoi2014]大融合 LCT维护子树信息

    题目描述 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够联通的树上路过它的简单路径的数量 ...

  10. BZOJ4530: [Bjoi2014]大融合

    Description 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够 联通的树上路过它 ...

随机推荐

  1. Makefile经典教程(一个很棒很清晰的讲解)【转】

    转自:https://blog.csdn.net/seven_amber/article/details/70216216 该篇文章为转载,是对原作者系列文章的总汇加上标注. 支持原创,请移步陈浩大神 ...

  2. DataSnap ClientdataSet 三层中主从表的操作

    非原创  摘自:http://hi.baidu.com/yagzh2000/blog/item/fc69df2cb9845de78b139946.html三层中主从表的操作(删除.新增.修改)一定要在 ...

  3. dubbo系列七、dubbo @Activate 注解使用和实现解析

    一.用法 Activate注解表示一个扩展是否被激活(使用),可以放在类定义和方法上,dubbo用它在spi扩展类定义上,表示这个扩展实现激活条件和时机. @Activate(group = Cons ...

  4. python根据服务名获取服务启动路径

    #coding=utf8 import _winreg as winreg class Win32Environment: """Utility class to get ...

  5. linux windows 共享文件夹

    1.首先在windows上共享一个目录,如:共享了目录share,用户和密码都是:massky 2.在linux机器上,在/mnt目录下建立一个ml45目录,使用root用户,执行下面命令: moun ...

  6. 量化投资与Python之NumPy

      数组计算 NumPy是高性能科学计算和数据分析的基础包.它是pandas等其他各种工具的基础.NumPy的主要功能:ndarray,一个多维数组结构,高效且节省空间无需循环对整组数据进行快速运算的 ...

  7. saltstack自动化运维系列②之saltstack的数据系统

    saltstack自动化运维系列②之saltstack的数据系统 grains:搜集minion启动时的系统信息,只有在minion启动时才会搜集,grains更适合做一些静态的属性值的采集,例如设备 ...

  8. zookeeper3.4.6配置实现自动清理日志

    在使用zookeeper过程中,我们知道,会有dataDir和dataLogDir两个目录,分别用于snapshot和事务日志的输出(默认情况下只有dataDir目录,snapshot和事务日志都保存 ...

  9. centos6.5生产环境编译安装nginx-1.11.3并增加第三方模块ngx_cache_purge、nginx_upstream_check、ngx_devel_kit、lua-nginx

    1.安装依赖包 yum install -y gcc gcc-c++ pcre-devel openssl-devel geoip-devel 2.下载需要的安装包 LuaJIT-2.0.4.zip ...

  10. tomcat6和tomcat7管理用户manager配置

    tomcat用户登录文件配置 如果想要对部署在tomcat上的项目进行管理查看,需要在tomcat安装目录conf文件夹下的tomcat-user.xml里添加用户登录权限.具体添加的内容如下: To ...