题目链接

\(Description\)

一共有\(n+m\)道判断题,其中有\(n\)个答案为"YES",\(m\)个为"NO"。现在以随机顺序给你这\(n+m\)道题,你需要依次回答,每回答一道题就会告诉你该题的正确答案。求最优策略下期望答对多少题。

\(n,m\leq 5\times10^5\)。

\(Solution\)

最优策略自然是每次答剩下数目多的。

每次回答问题要么答对要么答错,且使对应题数-1,不妨用坐标表示。

引用这位dalao的一张图:



左下角为\((0,0)\),右上角为\((n,m)\)(设\(n\geq m\))。题目的每种排列都对应一条从\((n,m)\)走到\((0,0)\)的路径。

那么我们从\((n,m)\)走到\((0,0)\),每走一条蓝边就表示答对一题。可以发现要走的蓝边数目一定是\(n\)(即\(\max(n,m)\))。

如果一直在对角线的一侧走,显然成立。

否则至少要答对\(\max(n,m)-\min(n,m)\)题才能到对角线。然后每答错一题,都会导致一定能答对一题,这里一共会答对\(\min(n,m)\)题。所以总共就是\(\max(n,m)\)。

当走到对角线时(两种答案题数相同),会随便猜一个。这时答对的概率为\(\frac 12\)。即对于每个对角线上的点,每次经过期望答对题数都为\(\frac 12\)。

那么我们对每个对角线上的点统计经过它的路径有多少条即可。然后再除以总路径数,再乘以\(\frac 12\),最后加上\(\max(n,m)\)。

//18ms	7936KB
#include <cstdio>
#include <algorithm>
#define mod 998244353
const int N=1e6; int fac[N+3],ifac[N+3]; inline int FP(int x,int k)
{
int t=1;
for(; k; k>>=1,x=1ll*x*x%mod)
if(k&1) t=1ll*t*x%mod;
return t;
}
#define C(n,m) (1ll*fac[n+m]*ifac[n]%mod*ifac[m]%mod)//C(n+m,n) int main()
{
int n,m; scanf("%d%d",&n,&m);
if(n<m) std::swap(n,m); int lim=n+m; fac[0]=fac[1]=1;
for(int i=1; i<=lim; ++i) fac[i]=1ll*fac[i-1]*i%mod;
ifac[lim]=FP(fac[lim],mod-2);
for(int i=lim; i; --i) ifac[i-1]=1ll*ifac[i]*i%mod; long long ans=0;
for(int i=1; i<=m; ++i) ans+=1ll*C(i,i)*C(n-i,m-i)%mod;
ans=ans%mod*FP(C(n,m),mod-2)%mod*FP(2,mod-2)%mod;
printf("%lld\n",(ans+n)%mod); return 0;
}

AGC 019F.Yes or No(思路 组合)的更多相关文章

  1. Solution -「AGC 019F」「AT 2705」Yes or No

    \(\mathcal{Description}\)   Link.   有 \(n+m\) 个问题,其中 \(n\) 个答案为 yes,\(m\) 个答案为 no.每次你需要回答一个问题,然后得知这个 ...

  2. 基于C#程序设计语言的三种组合算法

    目录 基于C#程序设计语言的三种组合算法 1. 总体思路 1.1 前言 1.2 算法思路 1.3 算法需要注意的点 2. 三种组合算法 2.1 普通组合算法 2.2 与自身进行组合的组合算法 2.3 ...

  3. [LeetCode] Combinations [38]

    称号 Given two integers n and k, return all possible combinations of k numbers out of 1 ... n. For exa ...

  4. 剑指Offer——携程笔试题+知识点总结

    剑指Offer--携程笔试题+知识点总结 情景回顾 时间:2016.9.17 19:10-21:10 地点:山东省网络环境智能计算技术重点实验室 事件:携程笔试 总体来说,携程笔试内容与其它企业笔试题 ...

  5. [LeetCode] Subsets I (78) & II (90) 解题思路,即全组合算法

    78. Subsets Given a set of distinct integers, nums, return all possible subsets. Note: Elements in a ...

  6. leetCode 47.Permutations II (排列组合II) 解题思路和方法

    Permutations II  Given a collection of numbers that might contain duplicates, return all possible un ...

  7. stark组件开发之组合搜索实现思路

    - 关键字搜索. 可以做到的效果是, 输入20. 后太通过 Q()  函数. 来实现.  搜索是一个大的问题点. -  要想实现组合搜索, 首先要 明确的一点是. 在我当前的页面上, 正在进行展示的是 ...

  8. AGC 001E.BBQ Hard(组合 DP)

    题目链接 \(Description\) 给定长为\(n\)的两个数组\(a,b\),求\[\sum_{i=1}^n\sum_{j=i+1}^n\binom{a_i+a_j+b_i+b_j}{a_i+ ...

  9. BZOJ.2339.[HNOI2011]卡农(思路 DP 组合 容斥)

    题目链接 \(Description\) 有\(n\)个数,用其中的某些数构成集合,求构造出\(m\)个互不相同且非空的集合(\(m\)个集合无序),并满足每个数总共出现的次数为偶数的方案数. \(S ...

随机推荐

  1. 【转】Shell编程基础篇-下

    [转]Shell编程基础篇-下 1.1 条件表达式 1.1.1 文件判断 常用文件测试操作符 常用文件测试操作符 说明 -d文件,d的全拼为directory 文件存在且为目录则为真,即测试表达式成立 ...

  2. Shell 中test 单中括号[] 双中括号[[]] 的区别

    Shell test 单中括号[] 双中括号[[]] 的区别 在写Shell脚本的时候,经常在写条件判断语句时不知道该用[] 还是 [[]],首先我们来看他们的类别: $type [ [[ test ...

  3. 为cobbler自动化安装系统工具添加epel源

    关于cobbler的安装及部署,参考:CentOS 6.5自动化运维之基于cobbler服务的自动化安装操作系统详解http://blog.csdn.net/reblue520/article/det ...

  4. log4j2配置文件log4j2.xml

    原地址:https://www.cnblogs.com/hafiz/p/6170702.html 1.关于配置文件的名称以及在项目中的存放位置 log4j 2.x版本不再支持像1.x中的.proper ...

  5. Android 截屏与 WebView 长图分享经验总结

    最近在做新业务需求的同时,我们在 Android 上遇到了一些之前没有碰到过的问题,截屏分享. WebView 生成长图以及长图在各个分享渠道分享时图片模糊甚至分享失败等问题,在这过程中踩了很多坑,到 ...

  6. pytest十一:函数传参和 firture 传参数 request

    为了提高代码的复用性,我们在写用例的时候,会用到函数,然后不同的用例去调用这个函数.比如登录操作,大部分的用例都会先登录,那就需要把登录单独抽出来写个函数,其它用例全部的调用这个登录函数就行.但是登录 ...

  7. CSS 滤镜

    声明: web前端学习笔记,欢迎大神指点.联系QQ:1522025433. CSS样式表是一种为超文本标签语言提供增强补充服务的技术,可对每一个html的标签做精雕细刻的修饰.只用html制作的网页, ...

  8. Myeclipse如何使用自带git工具向远程仓库提交代码

    先看一下Myeclipse自带的git工具  本人是在码云上面注册的账号,上面有项目的仓库,将仓库的项目克隆到本地之后,在myeclipse中导入该项目. 那么如何将修改后的代码再提交到码云上面? 第 ...

  9. Crack相关

    Microsoft Office 2007专业增强版密钥:KXFDR-7PTMK-YKYHD-C8FWV-BBPVWM7YXX-XJ8YH-WY349-4HPR9-4JBYJCTKXX-M97FT-8 ...

  10. C#泛型(一)

    简介: 先看看泛型的概念--“通过参数化类型来实现在同一份代码上操作多种数据类型.利用“参数化类型”将类型抽象化,从而实现灵活的复用”. 很多初学者在刚开始接触泛型的时候会比较难理解 “泛型” 在这里 ...