题目大意:
有$N$项活动$M$个人,每个活动$act_i$有一个正的权值$a_i$,每个人$stu_i$有一个负的权值$b_i$。
每项活动能够被完成当且仅当该项活动所需的所有人到场。
如何选择活动使最终权值总和最大?
即对于给定的有向无环图,求出最大权闭合子图的权值。

结论:
最大权闭合子图的权值等于所有正权点之和减去最小割。

思路:
引理:
1.最小割一定是简单割;
2.简单割一定和一个闭合子图对应。
即最小割一定对应一个闭合子图,且就是最大权闭合子图。
证明(摘自HihoCoder):
首先有割的容量C(S,T)=T中所有正权点的权值之和+S中所有负权点的权值绝对值之和。
闭合子图的权值W=S中所有正权点的权值之和-S中所有负权点的权值绝对值之和。
则有C(S,T)+W=T中所有正权点的权值之和+S中所有正权点的权值之和=所有正权点的权值之和。
所以W=所有正权点的权值之和-C(S,T)。

 #include<queue>
#include<cstdio>
#include<cctype>
#include<vector>
#include<cstring>
inline int getint() {
char ch;
while(!isdigit(ch=getchar()));
int x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
const int inf=0x7fffffff;
int s,t;
const int E=,V=;
struct Edge {
int from,to,remain;
};
Edge e[E];
std::vector<int> g[V];
int sz=;
inline void add_edge(const int u,const int v,const int w) {
e[sz]=(Edge){u,v,w};
g[u].push_back(sz);
sz++;
}
int p[V],a[V];
inline int Augment() {
memset(a,,sizeof a);
a[s]=inf;
std::queue<int> q;
q.push(s);
while(!q.empty()&&!a[t]) {
int x=q.front();
q.pop();
for(unsigned i=;i<g[x].size();i++) {
Edge &y=e[g[x][i]];
if(!a[y.to]&&y.remain) {
p[y.to]=g[x][i];
a[y.to]=std::min(a[x],y.remain);
q.push(y.to);
}
}
}
return a[t];
}
inline int EdmondsKarp() {
int maxflow=;
while(int flow=Augment()) {
for(int i=t;i!=s;i=e[p[i]].from) {
e[p[i]].remain-=flow;
e[p[i]^].remain+=flow;
}
maxflow+=flow;
}
return maxflow;
}
int main() {
int n=getint(),m=getint();
s=,t=n+m+;
for(int i=;i<=m;i++) {
add_edge(n+i,t,getint());
add_edge(t,n+i,);
}
int sum=;
for(int i=;i<=n;i++) {
int a=getint();
sum+=a;
add_edge(s,i,a);
add_edge(i,s,);
for(int k=getint();k;k--) {
int v=getint();
add_edge(i,n+v,inf);
add_edge(n+v,i,);
}
}
printf("%d\n",sum-EdmondsKarp());
return ;
}

[HihoCoder1398]网络流五·最大权闭合子图的更多相关文章

  1. [HIHO119]网络流五·最大权闭合子图(最大流)

    题目链接:http://hihocoder.com/contest/hiho119/problem/1 题意:中文题意. 由于1≤N≤200,1≤M≤200.最极端情况就是中间所有边都是满的,一共有N ...

  2. P4177 [CEOI2008]order(网络流)最大权闭合子图

    P4177 [CEOI2008]order 如果不能租机器,这就是最大权闭合子图的题: 给定每个点的$val$,并给出限制条件:如果取点$x$,那么必须取$y_1,y_2,y_3......$,满足$ ...

  3. hdu 5772 String problem 最大权闭合子图

    String problem 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5772 Description This is a simple pro ...

  4. 洛谷 - P2805 - 植物大战僵尸 - 最大流 - 最大权闭合子图

    https://www.luogu.org/problemnew/show/P2805 最大权闭合子图的特点是,假如你要选一个结点,则要先选中它的所有子节点.正权连S负权连T,容量为绝对值,原图有向边 ...

  5. hihocoder1398 网络流五之最大权闭合子图

    最大权闭合子图 虽然我自己现在总结不好最大权闭合子图.但也算稍稍理解辣. 网络流起步ing~~~(- ̄▽ ̄)- #include<iostream> #include<cstdio& ...

  6. BZOJ 4873 [Shoi2017]寿司餐厅 | 网络流 最大权闭合子图

    链接 BZOJ 4873 题解 当年的省选题--还记得蒟蒻的我Day1 20分滚粗-- 这道题是个最大权闭合子图的套路题.严重怀疑出题人就是先画好了图然后照着图编了个3000字的题面.和我喜欢的妹子当 ...

  7. Cogs 727. [网络流24题] 太空飞行计划(最大权闭合子图)

    [网络流24题] 太空飞行计划 ★★☆ 输入文件:shuttle.in 输出文件:shuttle.out 简单对比 时间限制:1 s 内存限制:128 MB [问题描述] W 教授正在为国家航天中心计 ...

  8. bzoj1391 最大权闭合子图(also最小割、网络流)

    一道裸的最小割的题,写一下只是练练手. 表示被卡M,RE不开心.一道裸题至于吗? 再次复习一下最大权闭合子图: 1.每一个点若为正权,与源点连一条容量为绝对值权值的边.否则连向汇点一条容量为绝对值权值 ...

  9. P4177 [CEOI2008]order 网络流,最小割,最大权闭合子图

    题目链接 \(Click\) \(Here\) 如果没有租用机器就是一个裸的最大权闭合子图.现在有了租用机器应该怎么办呢? 单独拆点是不行的,因为会和直接买下的情况脱离关系,租借是和连边直接相关的,那 ...

随机推荐

  1. ARMV8 datasheet学习笔记3:AArch64应用级体系结构之Memory Type and Attributes

    1.前言 2. Memory类型和属性 memory分为normal memory和device memory,两种类型的Memory有各自的属性,除了下面介绍的几种属性外,还有其他一些杂项属性 2. ...

  2. How to Repair GRUB2 When Ubuntu Won’t Boot

    Ubuntu and many other Linux distributions use the GRUB2 boot loader. If GRUB2 breaks—for example, if ...

  3. kafka系列二、kafka manager的安装和使用

    1. Yahoo kafka manager介绍 项目地址:https://github.com/yahoo/kafka-manager Requirements: Kafka 0.8.1.1 or ...

  4. MyEclipse中如何配置默认jsp为UTF-8格式

  5. GBDT学习

    白话GBDT: https://blog.csdn.net/qq_26598445/article/details/80853873 优点: 预测精度高 适合低维数据 能处理非线性数据,该版本GBDT ...

  6. Python-2d形变 动画 表格

    一.形变 /*1.形变参考点: 三轴交界点*/ transform-origin: x轴坐标 y轴坐标; /*2.旋转 rotate deg*/ transform: rotate(720deg); ...

  7. #5【BZOJ4275】[ONTAK2015]Badania

    Description 给定三个数字串A,B,C,请找到一个A,B的最长公共子序列,满足C是该子序列的子串. Input 第一行包含一个正整数n(1<=n<=3000),表示A串的长度. ...

  8. BZOJ2618 [Cqoi2006]凸多边形 凸包 计算几何

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ2618 题意概括 给出多个凸包,求面积交. 题解 首先我们考虑两个凸包相交的情况. 例题:HDU16 ...

  9. 6-14 Abbott的复仇 uva816

    我的第一题bfs 将方向固定  NESW  然后左转和右转就是+3和+1!!! 还有就是  建立一个数组 储存父节点  这样就可以往回打印出路径   打印的截至条件是 d[][][]==0时  说明到 ...

  10. 9.Django组件-cookie和session

    HTTP协议的无保存状态,对两次请求没有任何关联.每次请求都是相互独立的. 1.cookie简介 什么是会话跟踪技术我们需要先了解一下什么是会话!可以把会话理解为客户端与服务器之间的一次会晤,在一次会 ...