B - 集合选数 (状压DP)
题目链接:https://cn.vjudge.net/contest/281960#problem/B
题目大意:中文题目
具体思路:
我们通过构造矩阵,
x , 3x,9x,27x
2x,6x,18x,54x
............
讲的很好的一篇博客:https://www.cnblogs.com/ljh2000-jump/p/6489018.html
可以看出,只要是选出的是相邻的,就一定是不满足的情况,所以说,我们可以通过构造矩阵将不满足的情况找出来,然后通过状压DP,通过不满足情况的筛选,将满足的情况找出来。
AC代码:
#include<bits/stdc++.h>
using namespace std;
# define inf 0x3f3f3f3f
# define ll long long
const int maxn = 1e5+;
const int mod = 1e9+;
int vis[maxn];
int a[][],n;
int f[][maxn];
int bin[],b[];
int cal(int t)
{
memset(b,,sizeof(b));
a[][]=t;
for(int i=; i<=; i++)
{
if(a[i][]*<=n)
{
a[i+][]=a[i][]*;
}
else
{
a[i+][]=n+;
}
}
for(int i=; i<=; i++)
{
for(int j=; j<=; j++)
{
if(a[i][j-]*<=n)
{
a[i][j]=a[i][j-]*;
}
else
a[i][j]=n+;
}
}
for(int i=; i<=; i++)
{
for(int j=; j<=; j++)
{
if(a[i][j]<=n)
{
b[i]+=bin[j-];
vis[a[i][j]]=;
}
}
}
for(int i=; i<=; i++)
{
for(int j=; j<=b[i]; j++)
{
f[i][j]=;
}
}
f[][]=;
for(int i=; i<=; i++)
{
for(int j=; j<=b[i]; j++)
{
if(f[i][j])
{
for(int k=; k<=b[i+]; k++)
{
if(((j&k)==)&&(k&(k>>))==)
{
f[i+][k]=(f[i][j]+f[i+][k])%mod;
}
}
}
}
}
return f[][];
}
int main()
{
scanf("%d",&n);
bin[]=;
for(int i=; i<=; i++)
{
bin[i]=bin[i-]<<;
}
ll ans=;
for(int i=; i<=n; i++)
{
if(vis[i])
continue;
ans=ans*cal(i)%mod;
}
printf("%lld\n",ans);
return ;
}
B - 集合选数 (状压DP)的更多相关文章
- 【BZOJ-2732】集合选数 状压DP (思路题)
2734: [HNOI2012]集合选数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1070 Solved: 623[Submit][Statu ...
- [HNOI2012]集合选数 --- 状压DP
[HNOI2012]集合选数 题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出\({1,2,3,4,5}\)的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x ...
- 【BZOJ-2734】集合选数 状压DP (思路题)
2734: [HNOI2012]集合选数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1070 Solved: 623[Submit][Statu ...
- BZOJ 2734 [HNOI2012]集合选数 (状压DP、时间复杂度分析)
题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2734 题解 嗯早就想写的题,昨天因为某些不可告人的原因(大雾)把这题写了,今天再来写题解 ...
- 洛谷$P3226\ [HNOI2012]$集合选数 状压$dp$
正解:$dp$ 解题报告: 传送门$QwQ$ 考虑列一个横坐标为比值为2的等比数列,纵坐标为比值为3的等比数列的表格.发现每个数要选就等价于它的上下左右不能选. 于是就是个状压$dp$板子了$QwQ$ ...
- $HNOI2012\ $ 集合选数 状压$dp$
\(Des\) 求对于正整数\(n\leq 1e5\),{\(1,2,3,...,n\)}的满足约束条件:"若\(x\)在该子集中,则\(2x\)和\(3x\)不在该子集中."的子 ...
- bzoj 2734: [HNOI2012]集合选数 状压DP
2734: [HNOI2012]集合选数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 560 Solved: 321[Submit][Status ...
- bzoj 2734 [HNOI2012]集合选数 状压DP+预处理
这道题很神啊…… 神爆了…… 思路大家应该看别的博客已经知道了,但大部分用的插头DP.我加了预处理,没用插头DP,一行一行来,速度还挺快. #include <cstdio> #inclu ...
- 【BZOJ5010】【FJOI2017】矩阵填数 [状压DP]
矩阵填数 Time Limit: 10 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description 给定一个 h*w 的矩阵,矩阵的行 ...
- HDU 1565 方格取数 状压dp
题目: 给你一个n*n的格子的棋盘,每个格子里面有一个非负数. 从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取的数所在的2个格子不能相邻,并且取出的数的和最大. Input 包括多 ...
随机推荐
- POJ3122-Pie-二分答案
有N个派,F+1个人,每个人分到的体积要相等,而且每个人只能有一块派. 二分答案,对于一个mid,对每个派进行检测,尽量的多分,然后如果份数比F+1大,说明mid可以更大,就把mid给low.注意份数 ...
- day12 max min zip 用法
max min ,查看最大值,最小值 基础玩法 l = [1,2,3,4,5] print(max(l)) print(min(l)) 高端玩法 默认字典的取值是key的比较 age_dic={'al ...
- yml实例
producer.yml apiVersion: v1kind: Podmetadata:name: producer-consumerspec:containers:- image: busybox ...
- CF1114E Arithmetic Progression(交互题,二分,随机算法)
既然是在CF上AC的第一道交互题,而且正是这场比赛让我升紫了,所以十分值得纪念. 题目链接:CF原网 题目大意:交互题. 有一个长度为 $n$ 的序列 $a$,保证它从小到大排序后是个等差数列.你不知 ...
- Java核心技术-并发
多任务(multitasking):在同一时刻运行多个程序的能力. 并发执行的进程数目并不是由CPU数目制约的.操作系统将CPU的时间片分配给每一个进程,给人并发处理的感觉. 多线程程序在较低的层次上 ...
- java匹配竖线的错误警示
String s1 = "|"; // 输出 | System.out.println(s1); String s2 = s1.replaceAll("|",& ...
- 【模板】spfa
代码如下 #include <bits/stdc++.h> using namespace std; const int maxv=1e4+10; const int maxe=5e5+1 ...
- shiro+SpringMVC 项目 配置404页面
说的配置404,大家都会想到去web.xml里面配置 <error-page> <error-code></error-code> <location> ...
- hibernate中复合主键的使用
转: https://blog.csdn.net/shutingwang/article/details/6627730 https://blog.csdn.net/lmy86263/article/ ...
- P2569 [SCOI2010]股票交易
最近 \(lxhgww\) 又迷上了投资股票,通过一段时间的观察和学习,他总结出了股票行情的一些规律. 通过一段时间的观察,\(lxhgww\) 预测到了未来 \(T\) 天内某只股票的走势,第 \( ...