B - 集合选数 (状压DP)
题目链接:https://cn.vjudge.net/contest/281960#problem/B
题目大意:中文题目
具体思路:
我们通过构造矩阵,
x , 3x,9x,27x
2x,6x,18x,54x
............
讲的很好的一篇博客:https://www.cnblogs.com/ljh2000-jump/p/6489018.html
可以看出,只要是选出的是相邻的,就一定是不满足的情况,所以说,我们可以通过构造矩阵将不满足的情况找出来,然后通过状压DP,通过不满足情况的筛选,将满足的情况找出来。
AC代码:
#include<bits/stdc++.h>
using namespace std;
# define inf 0x3f3f3f3f
# define ll long long
const int maxn = 1e5+;
const int mod = 1e9+;
int vis[maxn];
int a[][],n;
int f[][maxn];
int bin[],b[];
int cal(int t)
{
memset(b,,sizeof(b));
a[][]=t;
for(int i=; i<=; i++)
{
if(a[i][]*<=n)
{
a[i+][]=a[i][]*;
}
else
{
a[i+][]=n+;
}
}
for(int i=; i<=; i++)
{
for(int j=; j<=; j++)
{
if(a[i][j-]*<=n)
{
a[i][j]=a[i][j-]*;
}
else
a[i][j]=n+;
}
}
for(int i=; i<=; i++)
{
for(int j=; j<=; j++)
{
if(a[i][j]<=n)
{
b[i]+=bin[j-];
vis[a[i][j]]=;
}
}
}
for(int i=; i<=; i++)
{
for(int j=; j<=b[i]; j++)
{
f[i][j]=;
}
}
f[][]=;
for(int i=; i<=; i++)
{
for(int j=; j<=b[i]; j++)
{
if(f[i][j])
{
for(int k=; k<=b[i+]; k++)
{
if(((j&k)==)&&(k&(k>>))==)
{
f[i+][k]=(f[i][j]+f[i+][k])%mod;
}
}
}
}
}
return f[][];
}
int main()
{
scanf("%d",&n);
bin[]=;
for(int i=; i<=; i++)
{
bin[i]=bin[i-]<<;
}
ll ans=;
for(int i=; i<=n; i++)
{
if(vis[i])
continue;
ans=ans*cal(i)%mod;
}
printf("%lld\n",ans);
return ;
}
B - 集合选数 (状压DP)的更多相关文章
- 【BZOJ-2732】集合选数 状压DP (思路题)
2734: [HNOI2012]集合选数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1070 Solved: 623[Submit][Statu ...
- [HNOI2012]集合选数 --- 状压DP
[HNOI2012]集合选数 题目描述 <集合论与图论>这门课程有一道作业题,要求同学们求出\({1,2,3,4,5}\)的所有满足以 下条件的子集:若 x 在该子集中,则 2x 和 3x ...
- 【BZOJ-2734】集合选数 状压DP (思路题)
2734: [HNOI2012]集合选数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1070 Solved: 623[Submit][Statu ...
- BZOJ 2734 [HNOI2012]集合选数 (状压DP、时间复杂度分析)
题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2734 题解 嗯早就想写的题,昨天因为某些不可告人的原因(大雾)把这题写了,今天再来写题解 ...
- 洛谷$P3226\ [HNOI2012]$集合选数 状压$dp$
正解:$dp$ 解题报告: 传送门$QwQ$ 考虑列一个横坐标为比值为2的等比数列,纵坐标为比值为3的等比数列的表格.发现每个数要选就等价于它的上下左右不能选. 于是就是个状压$dp$板子了$QwQ$ ...
- $HNOI2012\ $ 集合选数 状压$dp$
\(Des\) 求对于正整数\(n\leq 1e5\),{\(1,2,3,...,n\)}的满足约束条件:"若\(x\)在该子集中,则\(2x\)和\(3x\)不在该子集中."的子 ...
- bzoj 2734: [HNOI2012]集合选数 状压DP
2734: [HNOI2012]集合选数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 560 Solved: 321[Submit][Status ...
- bzoj 2734 [HNOI2012]集合选数 状压DP+预处理
这道题很神啊…… 神爆了…… 思路大家应该看别的博客已经知道了,但大部分用的插头DP.我加了预处理,没用插头DP,一行一行来,速度还挺快. #include <cstdio> #inclu ...
- 【BZOJ5010】【FJOI2017】矩阵填数 [状压DP]
矩阵填数 Time Limit: 10 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description 给定一个 h*w 的矩阵,矩阵的行 ...
- HDU 1565 方格取数 状压dp
题目: 给你一个n*n的格子的棋盘,每个格子里面有一个非负数. 从中取出若干个数,使得任意的两个数所在的格子没有公共边,就是说所取的数所在的2个格子不能相邻,并且取出的数的和最大. Input 包括多 ...
随机推荐
- 机器学习--Logistic回归
logistic回归 很多时候我们需要基于一些样本数据去预测某个事件是否发生,如预测某事件成功与失败,某人当选总统是否成功等. 这个时候我们希望得到的结果是 bool型的,即 true or fals ...
- BZOJ2793[Poi2012]Vouchers——枚举
题目描述 考虑正整数集合,现在有n组人依次来取数,假设第i组来了x人,他们每个取的数一定是x的倍数,并且是还剩下的最小的x个.正整数中有m个数被标成了幸运数,问有哪些人取到了幸运数. 输入 第一行一个 ...
- Linux定时器crontab的使用
参数 Usage: crontab [参数] 文件 crontab [参数] crontab -n [主机名] Options: -u <user> 定义用户 -e 编辑工作表 -l 列出 ...
- day24 包
# 把解决一类问题的模块会被放在一个文件夹里面,即包 # import os # os.makedirs('glance/api') # os.makedirs('glance/cmd') # os. ...
- Java 的类加载机制
Java 的类加载机制 来源 https://www.cnblogs.com/xiaoxi/p/6959615.html 一.什么是类的加载 类的加载指的是将类的.class文件中的二进制数据读入到内 ...
- 洛谷 P2491消防 解题报告
P2491 消防 题目描述 某个国家有n个城市,这n个城市中任意两个都连通且有唯一一条路径,每条连通两个城市的道路的长度为zi(zi<=1000). 这个国家的人对火焰有超越宇宙的热情,所以这个 ...
- sliding menu
http://www.androiduipatterns.com/2012/06/emerging-ui-pattern-side-navigation.htmlhttps://github.com/ ...
- Flash10 使用剪贴板得改变程序的写法了
昨天一个客户告诉我,在她的电脑上无法复制图片的链接地址. 一开始,我以为是她操作有误,因为在我们的系统里使用的是一种“双保险”的复制方法. javascript + flash 两种方法来进行复制. ...
- java操作redis集群配置[可配置密码]和工具类
java操作redis集群配置[可配置密码]和工具类 <dependency> <groupId>redis.clients</groupId> & ...
- 导入gradle项目
1.1 代码下载 将代码下载到本机具体位置: 根据svn地址用外部svn工具导入项目到本地一个目录 比如 d:/a 1.2 导入工程 1.2.1 导入gradle工具 1.2.2 选择代码路径 1.2 ...