luogu P2303 [SDOi2012]Longge的问题
\]
考虑枚举所有可能的gcd,可以发现这一定是\(n\)的约数,当\(\gcd(i,n)=x\)时,\(gcd(\frac{i}{x},\frac{n}{x})=1\),可以知道gcd为\(x\)的数的个数就是\(\varphi_{\frac{n}{x}}\)
所以要求的是$$\sum_{d|n}d*\varphi_{\frac{n}{d}}$$
求\(\varphi\)的话只要像筛素数那样筛出来救星了
#include<bits/stdc++.h>
#define il inline
#define re register
#define LL long long
#define db double
#define ldb long double
#define eps (1e-7)
using namespace std;
il LL rd()
{
LL x=0,w=1;char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
LL n,prm[20][2],p[10000],tt,tmd,a1;
void d1(int o,LL s)
{
if(o>tt) {p[++tmd]=s;return;}
for(int i=0;i<=prm[o][1];i++)
{
d1(o+1,s);
s*=prm[o][0];
}
}
int main()
{
n=rd();
LL sn=sqrt(n),bb=n;
for(LL i=2;i<=sn&&bb;i++)
{
if(bb%i==0)
{
prm[++tt][0]=i;
while(bb%i==0) bb/=i,++prm[tt][1];
}
}
if(bb>1) prm[++tt][0]=bb,prm[tt][1]=1;
d1(1,1);
sort(p+1,p+tmd+1);
map<LL,LL> phi;
phi[1]=1,tt=0;
for(LL i=2;i<=tmd;i++)
{
if(phi.find(p[i])==phi.end()) phi[p[i]]=p[i]-1,++tt;
for(int j=1;j<=tt&&p[i]*prm[j][0]<=n;j++)
{
phi[p[i]*prm[j][0]]=phi[p[i]]*1ll*(prm[j][0]-1);
if(p[i]%prm[j][0]==0) {phi[p[i]*prm[j][0]]+=phi[p[i]];break;}
}
}
for(LL i=1;i<=tmd;i++) a1=(a1+phi[p[i]]*(n/p[i]));
printf("%lld ",a1);
return 0;
}
luogu P2303 [SDOi2012]Longge的问题的更多相关文章
- 洛谷 P2303 [SDOi2012]Longge的问题 解题报告
P2303 [SDOi2012]Longge的问题 题目背景 SDOi2012 题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数\(N\),你需要 ...
- 洛谷P2303 [SDOi2012]Longge的问题
题目背景 SDOi2012 题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). ...
- P2303 [SDOi2012]Longge的问题
题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). 输入输出格式 输入格式: 一 ...
- 洛谷P2303 [SDOi2012] Longge的问题 数论
看懂了题解,太妙了TT但是想解释的话可能要很多数学公式打起来太麻烦了TT所以我就先只放代码具体推演的过程我先写在纸上然后拍下来做成图片放上来算辣quq 好的那我先滚去做题了做完这题就把题解放上来.因为 ...
- 【洛谷题解】P2303 [SDOi2012]Longge的问题
题目传送门:链接. 能自己推出正确的式子的感觉真的很好! 题意简述: 求\(\sum_{i=1}^{n}gcd(i,n)\).\(n\leq 2^{32}\). 题解: 我们开始化简式子: \(\su ...
- P2303 [SDOI2012]Longge的问题 我傻QwQ
莫比乌斯反演学傻了$QwQ$ 思路:推式子? 提交:2次 错因:又双叒叕没开$long\space long$ 题解: $\sum_{i=1}^n gcd(i,n)$ $=\sum_{d|n}d\su ...
- [bzoj]2705: [SDOI2012]Longge的问题[数论][数学][欧拉函数][gcd]
[bzoj]P2705 OR [luogu]P2303 Longge的问题 Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需 ...
- BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2553 Solved: 1565[Submit][ ...
- BZOJ 2705: [SDOI2012]Longge的问题
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2554 Solved: 1566[Submit][ ...
随机推荐
- git如何拉取指定分支的代码
问题背景: 新项目还在开发阶段,没有正式对外发布,所以开发同事合并代码到develop上(或者其他名称分支上),而不是到master分支上 通过git拉取代码的时候,默认拉取的是master分支,如下 ...
- [IOI2018]会议——分治+线段树
题目链接: [IOI2018]meetings 题目大意:有$n$座山峰,每座山峰有一个高度,有$q$次询问,每次需要确定一个开会山峰使$[l,r]$所有山峰上的人都前往开会山峰,一个山峰的人去开会的 ...
- BZOJ1785[USACO 2010 Jan Gold 3.Cow Telephones]——贪心
题目描述 奶牛们建立了电话网络,这个网络可看作为是一棵无根树连接n(1 n 100,000)个节点,节点编号为1 .. n.每个节点可能是(电话交换机,或者电话机).每条电话线连接两个节点.第i条电话 ...
- BZOJ5361[Lydsy1805月赛]对称数——主席树+随机化
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=5361 好神的一道题啊! 容易看出来是要用维护权值的数据结构,因此树链剖分首先pass掉. ...
- 【AGC014E】Blue and Red Tree
Description 给定一棵\(n\)个节点的蓝边树,再给定一棵\(n\)个节点的红边树.请通过若干次操作将蓝树变成红树.操作要求和过程如下: 1.选定一条边全为蓝色的路径: 2.将路径上的一条蓝 ...
- pytesseract 使用框架
import pytesseract import cv2 img = cv2.imread("captcha.jpg",0) try: img.shape except Attr ...
- centos6.5下修改文件夹权限和用户名用户组
0.说明 Linux系统下经常遇到文件或者文件夹的权限问题,或者是因为文件夹所属的用户问题而没有访问的权限.根据我自己遇到的情况,对这类问题做一个小结. 在命令行使用命令"ll"或 ...
- Android: View换切后,无法正常设置焦点或切换后TextView的虚拟键盘不弹出
边学.边测试,花了三天时间完工一个小应用. 遇到很多问题,但最终还是解决了. 我的手机是Android2.2版,所以我也在是2.2版环境下学习,开发. 1. 在同一个Activity中的不同View( ...
- bug6 项目检出JRE问题(Unbound classpath container: 'JRE System Library [JavaSE-1.7]' in project 'idweb')
项目从SVN检出到工作空间后报了很多错误,其中很明显就是一些jar的问题,没有相关的jar或版本问题,看到最后的错误Unbound classpath Container: 'JRE System L ...
- Apache的ProxyPass简单使用
转: Apache的ProxyPass简单使用 置顶 2017年08月14日 18:54:33 师太,老衲把持不住了 阅读数:11164 http://mtnt2008.iteye.com/blo ...