[CQOI2018]交错序列 (矩阵快速幂,数论)
[CQOI2018]交错序列
$ solution: $
这一题出得真的很好,将原本一道矩阵快速幂硬生生加入组合数的标签,还那么没有违和感,那么让人看不出来。所以做这道题必须先知道(矩阵快速幂及如何构建递推矩阵)(组合数及二项式定理)。
不知道大家有没有做过洛谷的帕秋莉手环及P哥的桶,这道题中不能有相邻的两个1就是我们在构造这个交错序列时不能连续加入两个1,这个如果直接让我们求方案数(不靠虑一的个数)就是矩阵快速幂的板子了(可以自己推递推方程)。但是这1题偏偏把1的个数搭上了,我们发现1的个数是可以达到 $ 10^8 $ 级别的!所以我们不能直接把1得个数当做一个状态,这里有一个巧妙的避开1的个数的递推方程:
因为我们状态转移时,我们其实只需要知道序列末尾是1还是0,而1的个数我们不妨不管(为什么要折磨自己呢?)我们可以用 $ F[i][j][0/1] $ 为前 $ i $ 位,最后一位为 $ 0/1 $ ,满足条件的序列的1的个数的j次方和(注意是j次方和)。然后我们就可以避开1的个数(因为每一次我们如果要在序列末尾加一个1,就相当于所有长度为i的末尾为一的序列都要加上一个1,然后我们只要求 $ (y+1)^j $ 即可!这个可以用二项式定理搞一下)(这样建出来的矩阵只有90*90可以勉强过)(需要卡常)
后效性:我们避开了一的个数,但是我们需要求零得个数啊!这又怎么办呢?我们把题目要我们求的东西转化一下: $ xayb=(n-y)ayb=\sum_{i=0}{a}C(a,i)ni(-y){a-i}yb $ 这样我们就可以用我们之前设的(满足条件的序列的1的个数的j次方和)的这一维状态求解了!
卡常:因为这一题的模数小于 $ 10^8 $ 不是 $ 10^9 $ 我们矩阵乘法的时候可以多加几次再取模(详情看代码),不然真的很难卡常数!
$ code: $
#include<iostream>
#include<cstdio>
#include<iomanip>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<ctime>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#define ull unsigned long long
#define ll long long
#define db double
#define inf 0x7fffffff
#define rg register int
using namespace std;
int n,a,b,m,t,f,tot;
int C[93][93],nf[95];
struct su{
ll s[182][182];
inline void operator *(su x){
su y;
for(rg i=0;i<t;++i)
for(rg j=0;j<t;++j)
y.s[i][j]=0;
for(rg i=0;i<t;++i)
for(rg j=0;j<t;++j){
for(rg k=0;k<t;++k)
y.s[i][j]+=s[i][k]*x.s[k][j];
y.s[i][j]%=m;
}
*this=y;
}
}bas,ans;
inline int qr(){
char ch;
while((ch=getchar())<'0'||ch>'9');
int res=ch^48;
while((ch=getchar())>='0'&&ch<='9')
res=res*10+(ch^48);
return res;
}
int main(){
//freopen(".in","r",stdin);
//freopen(".out","w",stdout);
n=qr(); a=qr(); b=qr(); m=qr();
f=a+b+1; t=f<<1; nf[0]=1;
for(rg i=0;i<f;++i){
C[0][i]=1;
bas.s[i][i]=1;
bas.s[f+i][i]=1;
bas.s[0][f+i]=1;
nf[i+1]=(ull)nf[i]*n%m;
}
for(rg i=1;i<f;++i)
for(rg j=i;j<f;++j)
C[i][j]=(C[i][j-1]+C[i-1][j-1])%m,bas.s[i][f+j]=C[i][j];
ans.s[0][0]=1;
while(n){
if(n&1)ans*bas;
bas*bas; n>>=1;
}
for(rg i=0;i<=a;++i){
rg j=a+b-i;
rg x=(ll)C[i][a]*((a-i)&1?-1:1)*nf[i]%m;
rg y=(ans.s[0][j]+ans.s[0][j+f])%m;
tot=(tot+(ll)x*y)%m;
}printf("%d\n",(tot+m)%m);
return 0;
}
[CQOI2018]交错序列 (矩阵快速幂,数论)的更多相关文章
- HDU6395 Sequence(矩阵快速幂+数论分块)
题意: F(1)=A,F(2)=B,F(n)=C*F(n-2)+D*F(n-1)+P/n 给定ABCDPn,求F(n) mod 1e9+7 思路: P/n在一段n里是不变的,可以数论分块,再在每一段里 ...
- 51nod 1197 字符串的数量 V2(矩阵快速幂+数论?)
接上一篇,那个递推式显然可以用矩阵快速幂优化...自己随便YY了下就出来了,学了一下怎么用LaTeX画公式,LaTeX真是个好东西!嘿嘿嘿 如上图.(刚画错了一发...已更新 然后就可以过V2了 or ...
- 【BZOJ5298】[CQOI2018]交错序列(动态规划,矩阵快速幂)
[BZOJ5298][CQOI2018]交错序列(动态规划,矩阵快速幂) 题面 BZOJ 洛谷 题解 考虑由\(x\)个\(1\)和\(y\)个\(0\)组成的合法串的个数. 显然就是把\(1\)当做 ...
- BZOJ5298 CQOI2018 交错序列 【DP+矩阵快速幂优化】*
BZOJ5298 CQOI2018 交错序列 [DP+矩阵快速幂优化] Description 我们称一个仅由0.1构成的序列为"交错序列",当且仅当序列中没有相邻的1(可以有相邻 ...
- 【BZOJ4002】[JLOI2015]有意义的字符串(数论,矩阵快速幂)
[BZOJ4002][JLOI2015]有意义的字符串(数论,矩阵快速幂) 题面 BZOJ 洛谷 题解 发现我这种题总是做不动... 令\(A=\frac{b+\sqrt d}{2},B=\frac{ ...
- 【BZOJ2432】【NOI2011】兔农(数论,矩阵快速幂)
[BZOJ2432][NOI2011]兔农(数论,矩阵快速幂) 题面 BZOJ 题解 这题\(75\)分就是送的,我什么都不想写. 先手玩一下,发现每次每次出现\(mod\ K=1\)的数之后 把它减 ...
- cf 450b 矩阵快速幂(数论取模 一大坑点啊)
Jzzhu has invented a kind of sequences, they meet the following property: You are given x and y, ple ...
- 数学--数论--HDU - 6395 Let us define a sequence as below 分段矩阵快速幂
Your job is simple, for each task, you should output Fn module 109+7. Input The first line has only ...
- HDU 2256 Problem of Precision 数论矩阵快速幂
题目要求求出(√2+√3)2n的整数部分再mod 1024. (√2+√3)2n=(5+2√6)n 如果直接计算,用double存值,当n很大的时候,精度损失会变大,无法得到想要的结果. 我们发现(5 ...
随机推荐
- maven 引用另一个jar包 需要先打包在仓库里面 并在pom里面配置 才可以引用
maven 引用另一个jar包 需要先打包在仓库里面 并在pom里面配置 才可以引用
- VMWare 安装 Eclipse
由于之前已经安装了 OpenJDK 所以 这次我们可以直接下载 eclipse来安装. Eclipse 下载:http://www.eclipse.org/downloads/?osType=li ...
- 【CodeForces 624D/623B】Array GCD
题 You are given array ai of length n. You may consecutively apply two operations to this array: remo ...
- android限制横竖屏切换 方法
在需要限制横竖屏切换的时候,只需要在AndroidManifest.xml文件中加入android:screenOrientation属性限制. android:screenOrientation=& ...
- 【BZOJ2001】[HNOI2010]城市建设(CDQ分治,线段树分治)
[BZOJ2001][HNOI2010]城市建设(CDQ分治,线段树分治) 题面 BZOJ 洛谷 题解 好神仙啊这题.原来想做一直不会做(然而YCB神仙早就切了),今天来怒写一发. 很明显这个玩意换种 ...
- 一个简单的mock server
在前后端分离的项目中, 前端无需等后端接口提供了才调试, 后端无需等第三方接口提供了才调试, 基于“契约”,可以通过mock server实现调试, 下面是一个简单的mock server,通过pyt ...
- qrcode模块简单使用
函数式自动生成二维码 import qrcode img = qrcode.make("hello world!") img.get_image().show() img.save ...
- java匹配竖线的错误警示
String s1 = "|"; // 输出 | System.out.println(s1); String s2 = s1.replaceAll("|",& ...
- pip install时遇到MemoryError的原因和处理方法
前言:同学们在用pip install的时候,可能会遇到MemoryError的问题 报错如下,看最后一行的memory error关键字: 报错的原因大致如下:(详细细节可以查看此处) This e ...
- Ubuntu16.04中禁用UTC解决双系统时间问题
解决方法一 sudo hwclock -w --localtime 解决方法二 timedatectl set-local-rtc 1 解决方法三 修改/etc/adjtime文件中的UTC,为LOC ...