理顺FFT
DFT(Discrete Fourier Transform):离散傅立叶变换
直观的计算DFT算法复杂度为O(N*N)。
FFT(Fast Fourier Transformation):快速傅立叶变换,DFT的快速算法。凡将DFT算法复杂度降至O(N*logN)的算法,均可称为FFT。
最常用的FFT为奇偶分治法,要求输入点个数N为2的幂。下文中均假设N为2的幂。
N个点的DFT处理器定义:
N个点的DFT处理器有N个输入和N个输出,输入N个点的值,输出各点的变换结果值。
(注意左边x为小写,右边X为大写)
黑箱内逻辑为:

其中
。
根据N个点的DFT处理器的定义,可以推得N/2个点的DFT处理器的定义。
N/2个点的DFT处理器定义:
N/2个点的DFT处理器有N/2个输入和N/2个输出,输入N/2个点的值,输出各点的变换结果值。

黑箱内逻辑为:

考虑下面问题:
问题一:将N/2个偶点x[0],x[2],x[4],...,x[N-2]输入N/2个点的DFT处理器,设输出为G[0],G[1],...,G[N/2-1],那么G[k](k=1~N/2-1)等于多少?

解:根据N/2个点的DFT处理器定义,得:

问题二:将N/2个奇点x[1],x[3],x[5],...,x[N-1]输入N/2个点的DFT处理器,设输出为H[0],H[1],...,H[N/2-1],那么H[k](k=1~N/2-1)等于多少?

解:根据N/2个点的DFT处理器定义,得

考虑下面问题:
假设我现在想计算N个点x[0]~x[N-1]的DFT的结果X[0]~X[N-1],但是凑巧学前班没毕业不会算数儿,所以只能借助一个现成的N个点的DFT处理器来完成计算,但凑巧手头没有N个点的DFT处理器,却凑巧有两个N/2个点的DFT处理器,那么我还能不能完成计算呢?
解:
能完成计算,可以用两个N/2个点的DFT处理器DIY一个N个点的DFT处理器,然后用这个DIY的DFT处理器完成计算。
那么,如何DIY呢?
首先可验证恒等式:

然后据此恒等式连电路,连好结果如下:

由此可见,可以用两个N/2个点的DFT处理器组装成N个点的DFT处理器。重复这一思想,那两个N/2个点的DFT处理器每个都可以由两个N/4个点的DFT处理器组成,由于N为2的幂,所以此过程可反复进行,直到分解为1个点的DFT处理器为止。
此即基于奇偶分治的FFT算法。
算法复杂度分析:
设使用上述FFT算法的情况下N point DFT所需乘法次数为C(N),则根据上面电路图显然有:
C(N)=2C(N/2)+N
又由于1个点的FFT所需乘法次数为1(即输入值x乘以
),即
C(1)=1
求解此递推公式,得

所以算法复杂度为O(N*logN)
参考:
https://www.youtube.com/watch?v=EsJGuI7e_ZQ
https://www.youtube.com/watch?v=1mVbZLHLaf0
----补充
一,
因为
,所以前面电路图可等价地优化为:

参考:https://cnx.org/contents/zmcmahhR@7/Decimation-in-time-DIT-Radix-2 (其中Additional Simplification一节)。
二,
递推公式
C(N)=2C(N/2)+N
C(1)=1
求解过程如下:
令

则

用累加法求解D(m),写:

将第二式乘以2,将第三式乘以4,将第四式乘以8...然后累加,得:

所以

即

理顺FFT的更多相关文章
- 并行计算提升32K*32K点(32位浮点数) FFT计算速度(4核八线程E3处理器)
对32K*32K的随机数矩阵进行FFT变换,数的格式是32位浮点数.将产生的数据存放在堆上,对每一行数据进行N=32K的FFT,记录32K次fft的时间. 比较串行for循环和并行for循环的运行时间 ...
- 【BZOJ-2179&2194】FFT快速傅里叶&快速傅里叶之二 FFT
2179: FFT快速傅立叶 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 2978 Solved: 1523[Submit][Status][Di ...
- 为什么FFT时域补0后,经FFT变换就是频域进行内插?
应该这样来理解这个问题: 补0后的DFT(FFT是DFT的快速算法),实际上公式并没变,变化的只是频域项(如:补0前FFT计算得到的是m*2*pi/M处的频域值, 而补0后得到的是n*2*pi/N处的 ...
- FFT NNT
算算劳资已经多久没学新算法了,又要重新开始学辣.直接扔板子,跑...话说FFT算法导论里讲的真不错,去看下就懂了. //FFT#include <cstdio> #include < ...
- CC countari & 分块+FFT
题意: 求一个序列中顺序的长度为3的等差数列. SOL: 对于这种计数问题都是用个数的卷积来进行统计.然而对于这个题有顺序的限制,不好直接统计,于是竟然可以分块?惊为天人... 考虑分块以后的序列: ...
- ECF R9(632E) & FFT
Description: 上一篇blog. Solution: 同样我们可以用fft来做...就像上次写的那道3-idoit一样,对a做k次卷积就好了. 同样有许多需要注意的地方:我们只是判断可行性, ...
- fft练习
数学相关一直都好弱啊>_< 窝这个月要补一补数学啦, 先从基础的fft补起吧! 现在做了 道. 窝的fft 模板 (bzoj 2179) #include <iostream> ...
- FFT时域与频域的关系,以及采样速率与采样点的影响
首先对于FFT来说,输入的信号是一个按一定采样频率获得的信号序列,而输出是每个采样点对应的频率的幅度(能量). 下面详细分析: 在FFT的输出数据中,第一个值是直流分量的振幅(这样对应周期有无穷的可能 ...
- 【玩转单片机系列002】 如何使用STM32提供的DSP库进行FFT
前些日子,因为需要在STM32F103系列处理器上,对采集的音频信号进行FFT,所以花了一些时间来研究如何高效并精确的在STM32F103系列处理器上实现FFT.在网上找了很多这方面的资料做实验并进行 ...
随机推荐
- c# windows服务如何获取自己的安装路径
public static string GetWindowsServiceInstallPath(string ServiceName) { string key ...
- 【CSS3】响应式布局
准备工作1:设置Meta标签 首先我们在使用Media的时候需要先设置下面这段代码,来兼容移动设备的展示效果: 1 <meta name="viewport" content ...
- 1.HTTP协议|web框架
1.web应用 Web应用程序是一种可以通过Web访问的应用程序,程序的最大好处是用户很容易访问应用程序,用户只需要有浏览器即可,不需要再安装其他软件.应用程序有两种模式C/S.B/S.C/S是客户端 ...
- java中关于重载与重写的区别
1.重载 允许多个同名但是形式参数个数或参数类型不同的方法存在同一个类中,在调用时根据形式参数列表来调用对应的方法. 2.判断 (1):方法名必须相同. (2):形式参数个数不同或者参数类型不同(满足 ...
- poj 2406 Power Srings (kmp循环节) (经典)
<题目链接> 题目大意: 给出一个字符串,求其字串在该字符串中循环的最大周期. 解题分析: length=len-Next[len],len为该字符串的最小循环节,如果len%length ...
- muduo网络库架构总结
目录 muduo网络库简介 muduo网络库模块组成 Recator反应器 EventLoop的两个组件 TimerQueue定时器 Eventfd Connector和Acceptor连接器和监听器 ...
- 操作系统概述(os 笔记一)
操作系统概述 操作系统的目标和功能 1.目标:作为用户/计算机接口 计算机的使用人群大致可以分为三类,终端用户,程序开发者,操作系统设计人员. 对于终端用户,即应用程序的用户来说,他们通常不关注计 ...
- BZOJ.1070.[SCOI2007]修车(费用流SPFA)
题目链接 /* 神tm看错题*2.. 假如人员i依次维修W1,W2,...,Wn,那么花费的时间是 W1 + W1+W2 + W1+W2+W3... = W1*n + W2*(n-1) + ... + ...
- [Astar2008]Black-Whilte-Tree
Description: 你拥有一棵有 N 个结点白色的树--所有节点都是白色的. 接下来,你需要处理 C 条指令: 1.修改指令:改变一个给定结点的颜色(白变黑,黑变白); 2.查询指令:询问从结点 ...
- 安卓开发-Activity中finish() onDestroy() 和System.exit()的区别(转)
Activity.finish()Call this when your activity is done and should be closed. 在你的activity动作完成的时候,或者Act ...