Dancing Stars on Me

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 1098    Accepted Submission(s): 598

Problem Description
The sky was brushed clean by the wind and the stars were cold in a black sky. What a wonderful night. You observed that, sometimes the stars can form a regular polygon in the sky if we connect them properly. You want to record these moments by your smart camera. Of course, you cannot stay awake all night for capturing. So you decide to write a program running on the smart camera to check whether the stars can form a regular polygon and capture these moments automatically.

Formally, a regular polygon is a convex polygon whose angles are all equal and all its sides have the same length. The area of a regular polygon must be nonzero. We say the stars can form a regular polygon if they are exactly the vertices of some regular polygon. To simplify the problem, we project the sky to a two-dimensional plane here, and you just need to check whether the stars can form a regular polygon in this plane.

 
Input
The first line contains a integer T indicating the total number of test cases. Each test case begins with an integer n, denoting the number of stars in the sky. Following n lines, each contains 2 integers xi,yi, describe the coordinates of n stars.

1≤T≤300
3≤n≤100
−10000≤xi,yi≤10000
All coordinates are distinct.

 
Output
For each test case, please output "`YES`" if the stars can form a regular polygon. Otherwise, output "`NO`" (both without quotes).
 
Sample Input
3
3
0 0
1 1
1 0
4
0 0
0 1
1 0
1 1
5
0 0
0 1
0 2
2 2
2 0
 
Sample Output
NO
YES
NO
 
Source
 
Recommend
hujie   |   We have carefully selected several similar problems for you:       
题意:给你n个点(-1e4<x,y<=1e4),判断这n个点能否组成一个正n边形;
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <vector>
#include <queue>
#include <map>
#include <algorithm>
#include <set>
#define MM(a) memset(a,0,sizeof(a))
typedef long long ll;
typedef unsigned long long ULL;
const double eps = 1e-12;
const int inf = 0x3f3f3f3f;
const double pi=acos(-1);
using namespace std; struct Point{
int x,y;
void read()
{
scanf("%d%d",&x,&y);
}
}p[105],tubao[105]; int dcmp(double a)
{
if(fabs(a)<eps) return 0;
else if(a>0) return 1;
else return -1;
} Point operator-(Point a,Point b)
{
return (Point){a.x-b.x,a.y-b.y};
} double dis(Point a)
{
return sqrt(a.x*a.x+a.y*a.y);
} double cross(Point a,Point b)
{
return a.x*b.y-b.x*a.y;
} double dot(Point a,Point b)
{
return a.x*b.x+a.y*b.y;
} bool cmp(Point a,Point b)
{
if(a.x!=b.x) return a.x<b.x;
else return a.y<b.y;
} int convex_hull(Point *p,int n,Point *tubao)
{
sort(p+1,p+n+1,cmp);
int m=0;
for(int i=1;i<=n;i++)
{
while(m>=2&&cross(p[i]-tubao[m-1],tubao[m]-tubao[m-1])>0) m--;
tubao[++m]=p[i];
}
int k=m;
for(int i=n-1;i>=1;i--)
{
while(m-k>=1&&cross(p[i]-tubao[m-1],tubao[m]-tubao[m-1])>0) m--;
tubao[++m]=p[i];
}
m--;
return m;
} int main()
{
int cas,n;
scanf("%d",&cas);
while(cas--)
{
scanf("%d",&n);
for(int i=1;i<=n;i++) p[i].read();
int k=convex_hull(p,n,tubao);
tubao[k+1]=tubao[1]; bool flag=true;
double tmp=(n-2.0)*pi/n; for(int i=1;i<=k-1;i++)
{
Point a=tubao[i+1]-tubao[i],b=tubao[i+2]-tubao[i+1];
double cosang=dot(a,b)/(dis(a)*dis(b));
double ang=acos(cosang);
ang=pi-ang;
if(dcmp(ang-tmp)!=0) {flag=false;break;}
}
if(flag) printf("YES\n");
else printf("NO\n");
}
return 0;
}

  分析:主要是借助这道题来分下下计算几何的精度问题,

double型数据精度处理的两种方式

1.相除改为ong long相乘,这种是肯定对的,不会错。

2.dcmp函数,这种比较简单,但是有一定的精度条件,如果角度是1/999999-1/1000000,那么相减起来就是1e-6*1/999999为1e-12级别,这样是可以使用dcmp的,比如本道题,因为1-e4<=x<=1e4,那么最小的角度差是1/(2*1e4-1)-1/2*1e4(最小的角是1/2*1e4,第二小的角度是1/(2*1e4-1))为1e-8级别>1e-12级别,所以可以用dcmp(eps<1e-12)

 

hdu 5533 正n边形判断 精度处理的更多相关文章

  1. HDU - 1317 ~ SPFA正权回路的判断

    题意:有最多一百个房间,房间之间连通,到达另一个房间会消耗能量值或者增加能量值,求是否能从一号房间到达n号房间. 看数据,有定5个房间,下面有5行,第 iii 行代表 iii 号 房间的信息,第一个数 ...

  2. hdu 5533 Dancing Stars on Me

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5533 Dancing Stars on Me Time Limit: 2000/1000 MS (Ja ...

  3. hdu 5533 Dancing Stars on Me(数学,水)

    Problem Description The sky was brushed clean by the wind and the stars were cold in a black sky. Wh ...

  4. HDU 5533/ 2015长春区域 G.Dancing Stars on Me 暴力

    Dancing Stars on Me Problem Description The sky was brushed clean by the wind and the stars were col ...

  5. HDU 5533 Dancing Stars on Me( 有趣的计算几何 )

    链接:传送门 题意:给出 n 个点,判断能不能构成一个正 n 边形,这 n 个点坐标是整数 思路:这道题关键就在与这 n 个点坐标是正整数!!!可以简单的分析,如果 n != 4,那一定就不能构成正 ...

  6. TZOJ 2392 Bounding box(正n边形三点求最小矩形覆盖面积)

    描述 The Archeologists of the Current Millenium (ACM) now and then discover ancient artifacts located ...

  7. Android 正 N 边形圆角头像的实现

    卖一下广告,欢迎大家关注我的微信公众号,扫一扫下方二维码或搜索微信号 stormjun94(徐公码字),即可关注. 目前专注于 Android 开发,主要分享 Android开发相关知识和一些相关的优 ...

  8. hdu 5533 Dancing Stars on Me 水题

    Dancing Stars on Me Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.p ...

  9. HDU 3342 Legal or Not(判断是否存在环)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3342 Legal or Not Time Limit: 2000/1000 MS (Java/Othe ...

随机推荐

  1. 从入门到自闭之Python--MySQL数据库的操作命令

    命令: mysqld install; 配置数据库 net start mysql;启动数据库 mysql -uroot -p; 以root权限启动数据库,-p之后输入密码 mysql -uroot ...

  2. Replication-Manager

    MYSQL5.7下搭建Replication-Manager 环境说明 在主机1,主机2,主机3上安装MySQL服务端和客户端. 主机1 主机2 主机3 操作系统 CentOS7.4 CentOS7. ...

  3. Vue 表情输入组件,微信face表情组件

    VUE表情包输入组件,先来张成品图看看. 年底了没事干,把以前做过的项目中的组件拿出来再复习一下, 先说说思路吧. 注意: 1. 项目是用vue-cli3.0搭建起来的项目, 参考cli3.0官网地址 ...

  4. es reindex

    # 添加mapping: url -X POST 'http://127.0.0.1:9200/indexName/typeName/_mapping?pretty' -d '{ "type ...

  5. 贝叶斯线性回归(Bayesian Linear Regression)

    贝叶斯线性回归(Bayesian Linear Regression) 2016年06月21日 09:50:40 Duanxx 阅读数 54254更多 分类专栏: 监督学习   版权声明:本文为博主原 ...

  6. 怎样创建并使用 vue 组件 (component) ?

    组件化开发 需要使用到组件, 围绕组件, Vue 提供了一系列功能方法, 这里仅记录组件的 最简单 的使用方法. 1. 通过 Vue.component(tagName, options) 注册一个 ...

  7. Spring boot data jpa 示例

    一.maven pom.xml文件 <?xml version="1.0" encoding="UTF-8"?> <project xmlns ...

  8. HttpWorkerRequest应用简介

    1. Using HttpWorkerRequest for getting headers1.使用HttpWorkerRequest获取headers信息 First, the HttpWorker ...

  9. 修改this的指向

    call var a={ name:'xuux', fn:function(a,b){ console.log(a+b); console.log(this);//{name: "xuux& ...

  10. svn+jenkins自动部署

    需求:项目经理想要将原型图修改完后直接发布 前置条件: 已经有了svn服务器,并正常使用 已经有了jenkins服务器,之前搭建的gitlab+jenkins, 如需搭建jenkins,参考 http ...