Java数据结构之TreeMap
一、源码注释
/**
* TreeMap基于NavigableMap 的一个红黑树的实现。TreeMap会根据比较器comparator对键值对的key进行比较进行排序,如果没有比较器就是用key的自然排序进行排序,这取决你用什么构造器
* TreeMap为containsKey、get、put和remove操作提供了保证的log(n)时间开销。
*
* TreeMap是非线程安全的,如果多个线程同时访问TreeMap,那必须在外部进行同步,以免出现线程安全问题。
* 或者通过SortedMap m = Collections.synchronizedSortedMap(new TreeMap(...));来对TreeMap进行包装
*
* 集合的视图方法返回的迭代器都是快速失败的,如果在创建迭代器后,任何时候对TreeMap的结构上的 修改(除非通过迭代器的删除方法),迭代器将抛出ConcurrentModificationException}。
* 因此,在面对并发修改时,迭代器会快速而干净地失败,而不是在将来某个不确定的时间冒着任意的、不确定的行为的风险。、
*
* 所有通过类的方法或者视图的到的 Map.Entry对不支持Entry.setValue 方法。(但是可以使用put更改关联映射中的映射。)
*
*
* @author Josh Bloch and Doug Lea
* @see Map
* @see HashMap
* @see Hashtable
* @see Comparable
* @see Comparator
* @see Collection
* @since 1.2
*/ public class TreeMap<K,V>
extends AbstractMap<K,V>
implements NavigableMap<K,V>, Cloneable, java.io.Serializable
{
/**
* 比较器,用来对TreeMap中的节点进行排序,如果使用key的自然排序comparator就为null
*/
private final Comparator<? super K> comparator; /**
* 红黑树的根节点
*/
private transient Entry<K,V> root; /**
* 红黑树的节点总数
*/
private transient int size = 0; /**
* 结构化修改的次数
*/
private transient int modCount = 0; /**
* 默认的构造函数,比较器为null,说明按照自然排序
*/
public TreeMap() {
comparator = null;
} /**
* 使用比较器的构造函数
*/
public TreeMap(Comparator<? super K> comparator) {
this.comparator = comparator;
} /**
*
*/
public TreeMap(Map<? extends K, ? extends V> m) {
comparator = null;
putAll(m);
} /**
* 通过SortMap来创建TreeMap,SortMap中的key必须是可比较的,也就是实现了Comparable接口
*/
public TreeMap(SortedMap<K, ? extends V> m) {
comparator = m.comparator();
try {
buildFromSorted(m.size(), m.entrySet().iterator(), null, null);
} catch (java.io.IOException cannotHappen) {
} catch (ClassNotFoundException cannotHappen) {
}
} // Query Operations /**
* 返回节点总个数
*/
public int size() {
return size;
} /**
* 是否包含该key
*/
public boolean containsKey(Object key) {
return getEntry(key) != null;
} /**
* 是否包含该value,遍历每个节点,然后去匹配是否存在该value
*/
public boolean containsValue(Object value) {
for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e))
if (valEquals(value, e.value))
return true;
return false;
} /**
* 返回key对应的value
*/
public V get(Object key) {
Entry<K,V> p = getEntry(key);
return (p==null ? null : p.value);
}
//获取比较器
public Comparator<? super K> comparator() {
return comparator;
} /**
* 获取第一个key,如果TreeMap为空,则抛出异常
*/
public K firstKey() {
return key(getFirstEntry());
} /**
* 返回最后一个key
*/
public K lastKey() {
return key(getLastEntry());
} /**
* 将Map中的所有键值对添加到TreeMap中
* 如果当前TreeMap中没有节点,并且传入map是SortedMap的实现,并且比较器也一样,这时候直接将map中的键值对拷贝到TreeMap中
* 否则就循环添加键值对
*/
public void putAll(Map<? extends K, ? extends V> map) {
int mapSize = map.size();
if (size==0 && mapSize!=0 && map instanceof SortedMap) {
Comparator<?> c = ((SortedMap<?,?>)map).comparator();
if (c == comparator || (c != null && c.equals(comparator))) {
++modCount;
try {
buildFromSorted(mapSize, map.entrySet().iterator(),
null, null);
} catch (java.io.IOException cannotHappen) {
} catch (ClassNotFoundException cannotHappen) {
}
return;
}
}
super.putAll(map);
} /**
* 通过key获取节点。
*/
final Entry<K,V> getEntry(Object key) {
// Offload comparator-based version for sake of performance
if (comparator != null)//存在比较器就通过比较器来进行查找
return getEntryUsingComparator(key);
if (key == null)//既没有比较器,此时key还为null就抛出异常
throw new NullPointerException();
@SuppressWarnings("unchecked")
Comparable<? super K> k = (Comparable<? super K>) key;//最后看key是否是可比较的,来进行查找
Entry<K,V> p = root;
while (p != null) {
int cmp = k.compareTo(p.key);
if (cmp < 0)
p = p.left;
else if (cmp > 0)
p = p.right;
else
return p;
}
return null;
} /**
* 使用比较器的getEntry版本。从getEntry中分离出来以获得性能。(对于不太依赖于比较器性能的大多数方法,这不值得这样做,但在这里是值得的。)
*/
final Entry<K,V> getEntryUsingComparator(Object key) {
@SuppressWarnings("unchecked")
K k = (K) key;
Comparator<? super K> cpr = comparator;
if (cpr != null) {
Entry<K,V> p = root;
while (p != null) {
int cmp = cpr.compare(k, p.key);
if (cmp < 0)
p = p.left;
else if (cmp > 0)
p = p.right;
else
return p;
}
}
return null;
} /**
* 返回大于等于key的最小的key所对应的节点
*/
final Entry<K,V> getCeilingEntry(K key) {
Entry<K,V> p = root;
while (p != null) {
int cmp = compare(key, p.key);
if (cmp < 0) {//如果要找的key小于当前节点就往左边找,
if (p.left != null)
p = p.left;
else
return p;//找到左节点都没有左节点了都没找到,那么该节点就是大于key的最小左节点
} else if (cmp > 0) {
if (p.right != null) {
p = p.right;
} else {
Entry<K,V> parent = p.parent;
Entry<K,V> ch = p;
//能够进入这个循环说明当前节点没有右子节点,并且当前节点是父节点的右子节点,并且当前节点还小于查询的节点
//这样就只能找它的父节点来看,一直往上找,直到找到某个节点是其父节点的左节点,那个左节点是大于key的 最小节点
//如果往上找,父节点一直都是其父节点的右节点,直到找到root节点,然后返回null。说明没有比key大的节点
while (parent != null && ch == parent.right) {
ch = parent;
parent = parent.parent;
}
return parent;
}
} else
return p;
}
return null;
} /**
* 返回小于等于key的最大的节点
*/
final Entry<K,V> getFloorEntry(K key) {
Entry<K,V> p = root;
while (p != null) {
int cmp = compare(key, p.key);
if (cmp > 0) {//key大于当前节点就往右边继续找
if (p.right != null)
p = p.right;
else
return p;//如果该节点没有右节点,并且此时key还大于当前节点,说明这个节点就是小于key的最大节点了
} else if (cmp < 0) {//如果key小于当前节点
if (p.left != null) {//如果还有左节点,就继续往左边找
p = p.left;
} else {
//如果当前节点没有左节点了,那么只有两种情况,
//一种是当前节点是整个树的最小节点,那说明真个树都没有小于key的节点了,那么就找到root节点,返回root的父节点null
//另外一种的就是当前节点不是整个树的 最小节点,那么循环获取父节点的时候,如果某个节点是父节点的右子节点,说明这个该节点的 父节点就是要找的小于key的最大节点
Entry<K,V> parent = p.parent;
Entry<K,V> ch = p;
while (parent != null && ch == parent.left) {
ch = parent;
parent = parent.parent;
}
return parent;
}
} else
return p;//等于key的节点 }
return null;
} /**
* 返回大于key的最小节点,如果没有就返回null。和getCeilingEntry一样,只是没有等于
*/
final Entry<K,V> getHigherEntry(K key) {
Entry<K,V> p = root;
while (p != null) {
int cmp = compare(key, p.key);
if (cmp < 0) {
if (p.left != null)
p = p.left;
else
return p;
} else {
if (p.right != null) {
p = p.right;
} else {
Entry<K,V> parent = p.parent;
Entry<K,V> ch = p;
while (parent != null && ch == parent.right) {
ch = parent;
parent = parent.parent;
}
return parent;
}
}
}
return null;
} /**
* 返回小于key的最大节点,没有就返回null。和getFloorEntry一样,只是没有等于
*/
final Entry<K,V> getLowerEntry(K key) {
Entry<K,V> p = root;
while (p != null) {
int cmp = compare(key, p.key);
if (cmp > 0) {
if (p.right != null)
p = p.right;
else
return p;
} else {
if (p.left != null) {
p = p.left;
} else {
Entry<K,V> parent = p.parent;
Entry<K,V> ch = p;
while (parent != null && ch == parent.left) {
ch = parent;
parent = parent.parent;
}
return parent;
}
}
}
return null;
} /**
* 将键值对放入TreeMap中
*/
public V put(K key, V value) {
Entry<K,V> t = root;
if (t == null) {//如果根节点为null,则将该节点设置为根节点
compare(key, key); // type (and possibly null) check root = new Entry<>(key, value, null);
size = 1;
modCount++;
return null;
}
int cmp;
Entry<K,V> parent;
// split comparator and comparable paths
Comparator<? super K> cpr = comparator;
if (cpr != null) {//如果有比较器,
do {//找到key对应的节点,直接将新的值赋给key
parent = t;
cmp = cpr.compare(key, t.key);
if (cmp < 0)
t = t.left;
else if (cmp > 0)
t = t.right;
else
return t.setValue(value);
} while (t != null);
}
else {//如果没有比较器,通过key的自身的比较性来进行比较
if (key == null)
throw new NullPointerException();
@SuppressWarnings("unchecked")
Comparable<? super K> k = (Comparable<? super K>) key;
do {//找到key对应的节点,直接将新的值赋给key
parent = t;
cmp = k.compareTo(t.key);
if (cmp < 0)
t = t.left;
else if (cmp > 0)
t = t.right;
else
return t.setValue(value);
} while (t != null);
}//如果没有找到key对应的节点,就创建一个新的节点,加在父节点下
Entry<K,V> e = new Entry<>(key, value, parent);
if (cmp < 0)
parent.left = e;
else
parent.right = e;
fixAfterInsertion(e);//加入新的节点后,要对树重新进行整理,来满足红黑树的要求
size++;
modCount++;
return null;
} /**
* 删除节点
*/
public V remove(Object key) {
Entry<K,V> p = getEntry(key);
if (p == null)
return null; V oldValue = p.value;
deleteEntry(p);
return oldValue;
} /**
* 清空整个TreeMap
*/
public void clear() {
modCount++;
size = 0;
root = null;
} /**
* 浅克隆
*/
public Object clone() {
TreeMap<?,?> clone;
try {
clone = (TreeMap<?,?>) super.clone();
} catch (CloneNotSupportedException e) {
throw new InternalError(e);
} // Put clone into "virgin" state (except for comparator)
clone.root = null;
clone.size = 0;
clone.modCount = 0;
clone.entrySet = null;
clone.navigableKeySet = null;
clone.descendingMap = null; // Initialize clone with our mappings
try {
clone.buildFromSorted(size, entrySet().iterator(), null, null);
} catch (java.io.IOException cannotHappen) {
} catch (ClassNotFoundException cannotHappen) {
} return clone;
} // NavigableMap API methods /**
* @since 1.6 返回第一个节点
*/
public Map.Entry<K,V> firstEntry() {
return exportEntry(getFirstEntry());
} /**
* @since 1.6 返回最后一个节点
*/
public Map.Entry<K,V> lastEntry() {
return exportEntry(getLastEntry());
} /**
* @since 1.6 返回并删除第一个节点
*/
public Map.Entry<K,V> pollFirstEntry() {
Entry<K,V> p = getFirstEntry();
Map.Entry<K,V> result = exportEntry(p);
if (p != null)
deleteEntry(p);
return result;
} /**
* @since 1.6 返回并删除最后一个节点
*/
public Map.Entry<K,V> pollLastEntry() {
Entry<K,V> p = getLastEntry();
Map.Entry<K,V> result = exportEntry(p);
if (p != null)
deleteEntry(p);
return result;
} /**
* 返回小于key的最大节点
* @since 1.6
*/
public Map.Entry<K,V> lowerEntry(K key) {
return exportEntry(getLowerEntry(key));
} /**
* 返回小于key的最大的 key
* @since 1.6
*/
public K lowerKey(K key) {
return keyOrNull(getLowerEntry(key));
} /**
* 返回小于等于key的最大节点
*/
public Map.Entry<K,V> floorEntry(K key) {
return exportEntry(getFloorEntry(key));
} /**
* 返回小于等于key的最大key
* @since 1.6
*/
public K floorKey(K key) {
return keyOrNull(getFloorEntry(key));
} /**
* 返回大于等于key的最小节点
* @since 1.6
*/
public Map.Entry<K,V> ceilingEntry(K key) {
return exportEntry(getCeilingEntry(key));
} /**
* 返回大于等于key的最小key
* @since 1.6
*/
public K ceilingKey(K key) {
return keyOrNull(getCeilingEntry(key));
} /**
* 返回大于key的最小节点
* @since 1.6
*/
public Map.Entry<K,V> higherEntry(K key) {
return exportEntry(getHigherEntry(key));
} /**
* 返回大于key的最小key
* @since 1.6
*/
public K higherKey(K key) {
return keyOrNull(getHigherEntry(key));
} // Views /**
* 在第一次请求此视图时,创建这些视图。视图是无状态的,因此没有理由创建多个视图。
*/
private transient EntrySet entrySet;
private transient KeySet<K> navigableKeySet;
private transient NavigableMap<K,V> descendingMap; /**
* 返回key的Set集合,Set中的key按照升序排列
* Set集合的修改会反馈到TreeMap中,同样TreeMap的修改也反馈到Set集合上
*/
public Set<K> keySet() {
return navigableKeySet();
} /**
* keySet()方法的实现
* @since 1.6
*/
public NavigableSet<K> navigableKeySet() {
KeySet<K> nks = navigableKeySet;
return (nks != null) ? nks : (navigableKeySet = new KeySet<>(this));
} /**
* 返回key的Set集合,Set中的key按照降序排列
* NavigableSet集合的修改会反馈到TreeMap中,同样TreeMap的修改也反馈到NavigableSet集合上
* @since 1.6
*/
public NavigableSet<K> descendingKeySet() {
return descendingMap().navigableKeySet();
} /**
* 返回TreeMap中所有的value,不会对value去重
* value集合的修改会反馈到TreeMap中,同样TreeMap的修改也反馈到value集合上
*/
public Collection<V> values() {
Collection<V> vs = values;
if (vs == null) {
vs = new Values();
values = vs;
}
return vs;
} /**
* 返回键值对的集合
*/
public Set<Map.Entry<K,V>> entrySet() {
EntrySet es = entrySet;
return (es != null) ? es : (entrySet = new EntrySet());
} /**
* 返回TreeMap的倒序Map
* 先看有没有缓存好的descendingMap,如果没有就创建一个DescendingSubMap返回并缓存
* @since 1.6
*/
public NavigableMap<K, V> descendingMap() {
NavigableMap<K, V> km = descendingMap;
return (km != null) ? km :
(descendingMap = new DescendingSubMap<>(this,
true, null, true,
true, null, true));
} /**
* 返回子视图,升序排列,对视图的 修改和对源map的修改都会相互影响对方
*/
public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
K toKey, boolean toInclusive) {
return new AscendingSubMap<>(this,
false, fromKey, fromInclusive,
false, toKey, toInclusive);
} /**
* 返回TreeMap中键小于toKey的所有节点的视图,inclusive表示是否可以等于tokey
*/
public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
return new AscendingSubMap<>(this,
true, null, true,
false, toKey, inclusive);
} /**
* 返回TreeMap中键大于fromKey的所有节点的视图,inclusive表示是否可以等于fromKey
*/
public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive) {
return new AscendingSubMap<>(this,
false, fromKey, inclusive,
true, null, true);
} /**
* 返回TreeMap的一个子视图,key大于等于formKey小于toKey
*/
public SortedMap<K,V> subMap(K fromKey, K toKey) {
return subMap(fromKey, true, toKey, false);
} /**
* 返回小于key的节点视图
*/
public SortedMap<K,V> headMap(K toKey) {
return headMap(toKey, false);
} /**
* 返回大于等于key的节点视图
*/
public SortedMap<K,V> tailMap(K fromKey) {
return tailMap(fromKey, true);
} /**
* 替换key和value都匹配的value值
*/
@Override
public boolean replace(K key, V oldValue, V newValue) {
Entry<K,V> p = getEntry(key);
if (p!=null && Objects.equals(oldValue, p.value)) {
p.value = newValue;
return true;
}
return false;
} /**
* 替换key的value,并返回旧的value
*/
@Override
public V replace(K key, V value) {
Entry<K,V> p = getEntry(key);
if (p!=null) {
V oldValue = p.value;
p.value = value;
return oldValue;
}
return null;
} /**
* 遍历TreeMap中的节点并做相关的操作
*/
@Override
public void forEach(BiConsumer<? super K, ? super V> action) {
Objects.requireNonNull(action);
int expectedModCount = modCount;
for (Entry<K, V> e = getFirstEntry(); e != null; e = successor(e)) {
action.accept(e.key, e.value); if (expectedModCount != modCount) {
throw new ConcurrentModificationException();
}
}
} /**
* 替换括号中满足条件的键值对的值,新的值通过括号中的表达式计算得到
*/
@Override
public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
Objects.requireNonNull(function);
int expectedModCount = modCount; for (Entry<K, V> e = getFirstEntry(); e != null; e = successor(e)) {
e.value = function.apply(e.key, e.value); if (expectedModCount != modCount) {
throw new ConcurrentModificationException();
}
}
} // TreeMap的值的视图 class Values extends AbstractCollection<V> {
public Iterator<V> iterator() {
return new ValueIterator(getFirstEntry());
} public int size() {
return TreeMap.this.size();
} public boolean contains(Object o) {
return TreeMap.this.containsValue(o);
} public boolean remove(Object o) {
for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e)) {
if (valEquals(e.getValue(), o)) {
deleteEntry(e);
return true;
}
}
return false;
} public void clear() {
TreeMap.this.clear();
} public Spliterator<V> spliterator() {
return new ValueSpliterator<K,V>(TreeMap.this, null, null, 0, -1, 0);
}
} /**
* TreeMap的键值对视图
*/
class EntrySet extends AbstractSet<Map.Entry<K,V>> {
public Iterator<Map.Entry<K,V>> iterator() {
return new EntryIterator(getFirstEntry());
} public boolean contains(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<?,?> entry = (Map.Entry<?,?>) o;
Object value = entry.getValue();
Entry<K,V> p = getEntry(entry.getKey());
return p != null && valEquals(p.getValue(), value);
} public boolean remove(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<?,?> entry = (Map.Entry<?,?>) o;
Object value = entry.getValue();
Entry<K,V> p = getEntry(entry.getKey());
if (p != null && valEquals(p.getValue(), value)) {
deleteEntry(p);
return true;
}
return false;
} public int size() {
return TreeMap.this.size();
} public void clear() {
TreeMap.this.clear();
} public Spliterator<Map.Entry<K,V>> spliterator() {
return new EntrySpliterator<K,V>(TreeMap.this, null, null, 0, -1, 0);
}
} /**
* 键迭代器
*/ Iterator<K> keyIterator() {
return new KeyIterator(getFirstEntry());
} /**
* 反向键迭代器
* @return
*/
Iterator<K> descendingKeyIterator() {
return new DescendingKeyIterator(getLastEntry());
}
//TreeMap中键的视图
static final class KeySet<E> extends AbstractSet<E> implements NavigableSet<E> {
private final NavigableMap<E, ?> m;
KeySet(NavigableMap<E,?> map) { m = map; } public Iterator<E> iterator() {
if (m instanceof TreeMap)
return ((TreeMap<E,?>)m).keyIterator();
else
return ((TreeMap.NavigableSubMap<E,?>)m).keyIterator();
} public Iterator<E> descendingIterator() {
if (m instanceof TreeMap)
return ((TreeMap<E,?>)m).descendingKeyIterator();
else
return ((TreeMap.NavigableSubMap<E,?>)m).descendingKeyIterator();
} public int size() { return m.size(); }
public boolean isEmpty() { return m.isEmpty(); }
public boolean contains(Object o) { return m.containsKey(o); }
public void clear() { m.clear(); }
public E lower(E e) { return m.lowerKey(e); }
public E floor(E e) { return m.floorKey(e); }
public E ceiling(E e) { return m.ceilingKey(e); }
public E higher(E e) { return m.higherKey(e); }
public E first() { return m.firstKey(); }
public E last() { return m.lastKey(); }
public Comparator<? super E> comparator() { return m.comparator(); }
public E pollFirst() {
Map.Entry<E,?> e = m.pollFirstEntry();
return (e == null) ? null : e.getKey();
}
public E pollLast() {
Map.Entry<E,?> e = m.pollLastEntry();
return (e == null) ? null : e.getKey();
}
public boolean remove(Object o) {
int oldSize = size();
m.remove(o);
return size() != oldSize;
}
public NavigableSet<E> subSet(E fromElement, boolean fromInclusive,
E toElement, boolean toInclusive) {
return new KeySet<>(m.subMap(fromElement, fromInclusive,
toElement, toInclusive));
}
public NavigableSet<E> headSet(E toElement, boolean inclusive) {
return new KeySet<>(m.headMap(toElement, inclusive));
}
public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
return new KeySet<>(m.tailMap(fromElement, inclusive));
}
public SortedSet<E> subSet(E fromElement, E toElement) {
return subSet(fromElement, true, toElement, false);
}
public SortedSet<E> headSet(E toElement) {
return headSet(toElement, false);
}
public SortedSet<E> tailSet(E fromElement) {
return tailSet(fromElement, true);
}
public NavigableSet<E> descendingSet() {
return new KeySet<>(m.descendingMap());
} public Spliterator<E> spliterator() {
return keySpliteratorFor(m);
}
} /**
* 键值对迭代器
*/
abstract class PrivateEntryIterator<T> implements Iterator<T> {
Entry<K,V> next;
Entry<K,V> lastReturned;
int expectedModCount; PrivateEntryIterator(Entry<K,V> first) {
expectedModCount = modCount;
lastReturned = null;
next = first;
} public final boolean hasNext() {
return next != null;
} final Entry<K,V> nextEntry() {
Entry<K,V> e = next;
if (e == null)
throw new NoSuchElementException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
next = successor(e);
lastReturned = e;
return e;
} final Entry<K,V> prevEntry() {
Entry<K,V> e = next;
if (e == null)
throw new NoSuchElementException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
next = predecessor(e);
lastReturned = e;
return e;
} public void remove() {
if (lastReturned == null)
throw new IllegalStateException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
// deleted entries are replaced by their successors
if (lastReturned.left != null && lastReturned.right != null)
next = lastReturned;
deleteEntry(lastReturned);
expectedModCount = modCount;
lastReturned = null;
}
} final class EntryIterator extends PrivateEntryIterator<Map.Entry<K,V>> {
EntryIterator(Entry<K,V> first) {
super(first);
}
public Map.Entry<K,V> next() {
return nextEntry();
}
} final class ValueIterator extends PrivateEntryIterator<V> {
ValueIterator(Entry<K,V> first) {
super(first);
}
public V next() {
return nextEntry().value;
}
} final class KeyIterator extends PrivateEntryIterator<K> {
KeyIterator(Entry<K,V> first) {
super(first);
}
public K next() {
return nextEntry().key;
}
} final class DescendingKeyIterator extends PrivateEntryIterator<K> {
DescendingKeyIterator(Entry<K,V> first) {
super(first);
}
public K next() {
return prevEntry().key;
}
public void remove() {
if (lastReturned == null)
throw new IllegalStateException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
deleteEntry(lastReturned);
lastReturned = null;
expectedModCount = modCount;
}
} // Little utilities 一些小工具 /**
* 比较两个对象,如果有比较器就用比较器,没有就用两个对象的自然排序进行比较
*/
@SuppressWarnings("unchecked")
final int compare(Object k1, Object k2) {
return comparator==null ? ((Comparable<? super K>)k1).compareTo((K)k2)
: comparator.compare((K)k1, (K)k2);
} /**
* 比较两个两个对象是否相等
*/
static final boolean valEquals(Object o1, Object o2) {
return (o1==null ? o2==null : o1.equals(o2));
} /**
* 返回entry的 不可变对象
*/
static <K,V> Map.Entry<K,V> exportEntry(TreeMap.Entry<K,V> e) {
return (e == null) ? null :
new AbstractMap.SimpleImmutableEntry<>(e);
} /**
* 返回键值对的键
*/
static <K,V> K keyOrNull(TreeMap.Entry<K,V> e) {
return (e == null) ? null : e.key;
} /**
* 返回节点的key,节点为null则报错
*/
static <K> K key(Entry<K,?> e) {
if (e==null)
throw new NoSuchElementException();
return e.key;
} // SubMaps /**
* Dummy value serving as unmatchable fence key for unbounded
* SubMapIterators
*/
private static final Object UNBOUNDED = new Object(); /**
* @serial include
*/
abstract static class NavigableSubMap<K,V> extends AbstractMap<K,V>
implements NavigableMap<K,V>, java.io.Serializable {
private static final long serialVersionUID = -2102997345730753016L;
/**
* The backing map.
*/
final TreeMap<K,V> m; /**
* fromStart 是否从第一个节点开始
* lo 开始节点
* loInclusive 是否包含lo节点
*
* toEnd 是否到最后一个节点
* hi 结束节点
* hiInclusive 是否包含hi节点
*/
final K lo, hi;
final boolean fromStart, toEnd;
final boolean loInclusive, hiInclusive; NavigableSubMap(TreeMap<K,V> m,
boolean fromStart, K lo, boolean loInclusive,
boolean toEnd, K hi, boolean hiInclusive) {
if (!fromStart && !toEnd) {
if (m.compare(lo, hi) > 0)
throw new IllegalArgumentException("fromKey > toKey");
} else {
if (!fromStart) // type check
m.compare(lo, lo);
if (!toEnd)
m.compare(hi, hi);
} this.m = m;
this.fromStart = fromStart;
this.lo = lo;
this.loInclusive = loInclusive;
this.toEnd = toEnd;
this.hi = hi;
this.hiInclusive = hiInclusive;
} // internal utilities
//判断key是否小于NavigableSubMap的lo
final boolean tooLow(Object key) {
if (!fromStart) {
int c = m.compare(key, lo);
if (c < 0 || (c == 0 && !loInclusive))
return true;
}
return false;
}
//判断key是否大于NavigableSubMap的hi
final boolean tooHigh(Object key) {
if (!toEnd) {
int c = m.compare(key, hi);
if (c > 0 || (c == 0 && !hiInclusive))
return true;
}
return false;
}
//判断key是否在NavigableSubMap的范围之间
final boolean inRange(Object key) {
return !tooLow(key) && !tooHigh(key);
}
//判断key是否在视图范围之内
final boolean inClosedRange(Object key) {
return (fromStart || m.compare(key, lo) >= 0)
&& (toEnd || m.compare(hi, key) >= 0);
}
//判断key是否在视图范围之内
final boolean inRange(Object key, boolean inclusive) {
return inclusive ? inRange(key) : inClosedRange(key);
} /*
* Absolute versions of relation operations.
* Subclasses map to these using like-named "sub"
* versions that invert senses for descending maps
*/ final TreeMap.Entry<K,V> absLowest() {
TreeMap.Entry<K,V> e =
(fromStart ? m.getFirstEntry() :
(loInclusive ? m.getCeilingEntry(lo) :
m.getHigherEntry(lo)));
return (e == null || tooHigh(e.key)) ? null : e;
} final TreeMap.Entry<K,V> absHighest() {
TreeMap.Entry<K,V> e =
(toEnd ? m.getLastEntry() :
(hiInclusive ? m.getFloorEntry(hi) :
m.getLowerEntry(hi)));
return (e == null || tooLow(e.key)) ? null : e;
} final TreeMap.Entry<K,V> absCeiling(K key) {
if (tooLow(key))
return absLowest();
TreeMap.Entry<K,V> e = m.getCeilingEntry(key);
return (e == null || tooHigh(e.key)) ? null : e;
} final TreeMap.Entry<K,V> absHigher(K key) {
if (tooLow(key))
return absLowest();
TreeMap.Entry<K,V> e = m.getHigherEntry(key);
return (e == null || tooHigh(e.key)) ? null : e;
} final TreeMap.Entry<K,V> absFloor(K key) {
if (tooHigh(key))
return absHighest();
TreeMap.Entry<K,V> e = m.getFloorEntry(key);
return (e == null || tooLow(e.key)) ? null : e;
} final TreeMap.Entry<K,V> absLower(K key) {
if (tooHigh(key))
return absHighest();
TreeMap.Entry<K,V> e = m.getLowerEntry(key);
return (e == null || tooLow(e.key)) ? null : e;
} /** Returns the absolute high fence for ascending traversal */
final TreeMap.Entry<K,V> absHighFence() {
return (toEnd ? null : (hiInclusive ?
m.getHigherEntry(hi) :
m.getCeilingEntry(hi)));
} /** Return the absolute low fence for descending traversal */
final TreeMap.Entry<K,V> absLowFence() {
return (fromStart ? null : (loInclusive ?
m.getLowerEntry(lo) :
m.getFloorEntry(lo)));
} // Abstract methods defined in ascending vs descending classes
// These relay to the appropriate absolute versions abstract TreeMap.Entry<K,V> subLowest();
abstract TreeMap.Entry<K,V> subHighest();
abstract TreeMap.Entry<K,V> subCeiling(K key);
abstract TreeMap.Entry<K,V> subHigher(K key);
abstract TreeMap.Entry<K,V> subFloor(K key);
abstract TreeMap.Entry<K,V> subLower(K key); /** Returns ascending iterator from the perspective of this submap */
abstract Iterator<K> keyIterator(); abstract Spliterator<K> keySpliterator(); /** Returns descending iterator from the perspective of this submap */
abstract Iterator<K> descendingKeyIterator(); // public methods public boolean isEmpty() {
return (fromStart && toEnd) ? m.isEmpty() : entrySet().isEmpty();
} public int size() {
return (fromStart && toEnd) ? m.size() : entrySet().size();
} public final boolean containsKey(Object key) {
return inRange(key) && m.containsKey(key);
} public final V put(K key, V value) {
if (!inRange(key))
throw new IllegalArgumentException("key out of range");
return m.put(key, value);
} public final V get(Object key) {
return !inRange(key) ? null : m.get(key);
} public final V remove(Object key) {
return !inRange(key) ? null : m.remove(key);
} public final Map.Entry<K,V> ceilingEntry(K key) {
return exportEntry(subCeiling(key));
} public final K ceilingKey(K key) {
return keyOrNull(subCeiling(key));
} public final Map.Entry<K,V> higherEntry(K key) {
return exportEntry(subHigher(key));
} public final K higherKey(K key) {
return keyOrNull(subHigher(key));
} public final Map.Entry<K,V> floorEntry(K key) {
return exportEntry(subFloor(key));
} public final K floorKey(K key) {
return keyOrNull(subFloor(key));
} public final Map.Entry<K,V> lowerEntry(K key) {
return exportEntry(subLower(key));
} public final K lowerKey(K key) {
return keyOrNull(subLower(key));
} public final K firstKey() {
return key(subLowest());
} public final K lastKey() {
return key(subHighest());
} public final Map.Entry<K,V> firstEntry() {
return exportEntry(subLowest());
} public final Map.Entry<K,V> lastEntry() {
return exportEntry(subHighest());
} public final Map.Entry<K,V> pollFirstEntry() {
TreeMap.Entry<K,V> e = subLowest();
Map.Entry<K,V> result = exportEntry(e);
if (e != null)
m.deleteEntry(e);
return result;
} public final Map.Entry<K,V> pollLastEntry() {
TreeMap.Entry<K,V> e = subHighest();
Map.Entry<K,V> result = exportEntry(e);
if (e != null)
m.deleteEntry(e);
return result;
} // Views
transient NavigableMap<K,V> descendingMapView;
transient EntrySetView entrySetView;
transient KeySet<K> navigableKeySetView; public final NavigableSet<K> navigableKeySet() {
KeySet<K> nksv = navigableKeySetView;
return (nksv != null) ? nksv :
(navigableKeySetView = new TreeMap.KeySet<>(this));
} public final Set<K> keySet() {
return navigableKeySet();
} public NavigableSet<K> descendingKeySet() {
return descendingMap().navigableKeySet();
} public final SortedMap<K,V> subMap(K fromKey, K toKey) {
return subMap(fromKey, true, toKey, false);
} public final SortedMap<K,V> headMap(K toKey) {
return headMap(toKey, false);
} public final SortedMap<K,V> tailMap(K fromKey) {
return tailMap(fromKey, true);
} // View classes abstract class EntrySetView extends AbstractSet<Map.Entry<K,V>> {
private transient int size = -1, sizeModCount; public int size() {
if (fromStart && toEnd)
return m.size();
if (size == -1 || sizeModCount != m.modCount) {
sizeModCount = m.modCount;
size = 0;
Iterator<?> i = iterator();
while (i.hasNext()) {
size++;
i.next();
}
}
return size;
} public boolean isEmpty() {
TreeMap.Entry<K,V> n = absLowest();
return n == null || tooHigh(n.key);
} public boolean contains(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<?,?> entry = (Map.Entry<?,?>) o;
Object key = entry.getKey();
if (!inRange(key))
return false;
TreeMap.Entry<?,?> node = m.getEntry(key);
return node != null &&
valEquals(node.getValue(), entry.getValue());
} public boolean remove(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<?,?> entry = (Map.Entry<?,?>) o;
Object key = entry.getKey();
if (!inRange(key))
return false;
TreeMap.Entry<K,V> node = m.getEntry(key);
if (node!=null && valEquals(node.getValue(),
entry.getValue())) {
m.deleteEntry(node);
return true;
}
return false;
}
} /**
* Iterators for SubMaps
* 视图迭代器
*/
abstract class SubMapIterator<T> implements Iterator<T> {
TreeMap.Entry<K,V> lastReturned;
TreeMap.Entry<K,V> next;
final Object fenceKey;
int expectedModCount; SubMapIterator(TreeMap.Entry<K,V> first,
TreeMap.Entry<K,V> fence) {
expectedModCount = m.modCount;
lastReturned = null;
next = first;
fenceKey = fence == null ? UNBOUNDED : fence.key;
} public final boolean hasNext() {
return next != null && next.key != fenceKey;
} final TreeMap.Entry<K,V> nextEntry() {
TreeMap.Entry<K,V> e = next;
if (e == null || e.key == fenceKey)
throw new NoSuchElementException();
if (m.modCount != expectedModCount)
throw new ConcurrentModificationException();
next = successor(e);
lastReturned = e;
return e;
} final TreeMap.Entry<K,V> prevEntry() {
TreeMap.Entry<K,V> e = next;
if (e == null || e.key == fenceKey)
throw new NoSuchElementException();
if (m.modCount != expectedModCount)
throw new ConcurrentModificationException();
next = predecessor(e);
lastReturned = e;
return e;
} final void removeAscending() {
if (lastReturned == null)
throw new IllegalStateException();
if (m.modCount != expectedModCount)
throw new ConcurrentModificationException();
// deleted entries are replaced by their successors
if (lastReturned.left != null && lastReturned.right != null)
next = lastReturned;
m.deleteEntry(lastReturned);
lastReturned = null;
expectedModCount = m.modCount;
} final void removeDescending() {
if (lastReturned == null)
throw new IllegalStateException();
if (m.modCount != expectedModCount)
throw new ConcurrentModificationException();
m.deleteEntry(lastReturned);
lastReturned = null;
expectedModCount = m.modCount;
} }
//视图Entry迭代器
final class SubMapEntryIterator extends SubMapIterator<Map.Entry<K,V>> {
SubMapEntryIterator(TreeMap.Entry<K,V> first,
TreeMap.Entry<K,V> fence) {
super(first, fence);
}
public Map.Entry<K,V> next() {
return nextEntry();
}
public void remove() {
removeAscending();
}
}
//逆序视图entry迭代器
final class DescendingSubMapEntryIterator extends SubMapIterator<Map.Entry<K,V>> {
DescendingSubMapEntryIterator(TreeMap.Entry<K,V> last,
TreeMap.Entry<K,V> fence) {
super(last, fence);
} public Map.Entry<K,V> next() {
return prevEntry();
}
public void remove() {
removeDescending();
}
} // 简单实现Spliterator来作为KeySpliterator的备份
final class SubMapKeyIterator extends SubMapIterator<K>
implements Spliterator<K> {
SubMapKeyIterator(TreeMap.Entry<K,V> first,
TreeMap.Entry<K,V> fence) {
super(first, fence);
}
public K next() {
return nextEntry().key;
}
public void remove() {
removeAscending();
}
public Spliterator<K> trySplit() {
return null;
}
public void forEachRemaining(Consumer<? super K> action) {
while (hasNext())
action.accept(next());
}
public boolean tryAdvance(Consumer<? super K> action) {
if (hasNext()) {
action.accept(next());
return true;
}
return false;
}
public long estimateSize() {
return Long.MAX_VALUE;
}
public int characteristics() {
return Spliterator.DISTINCT | Spliterator.ORDERED |
Spliterator.SORTED;
}
public final Comparator<? super K> getComparator() {
return NavigableSubMap.this.comparator();
}
}
//逆序视图key迭代器
final class DescendingSubMapKeyIterator extends SubMapIterator<K>
implements Spliterator<K> {
DescendingSubMapKeyIterator(TreeMap.Entry<K,V> last,
TreeMap.Entry<K,V> fence) {
super(last, fence);
}
public K next() {
return prevEntry().key;
}
public void remove() {
removeDescending();
}
public Spliterator<K> trySplit() {
return null;
}
public void forEachRemaining(Consumer<? super K> action) {
while (hasNext())
action.accept(next());
}
public boolean tryAdvance(Consumer<? super K> action) {
if (hasNext()) {
action.accept(next());
return true;
}
return false;
}
public long estimateSize() {
return Long.MAX_VALUE;
}
public int characteristics() {
return Spliterator.DISTINCT | Spliterator.ORDERED;
}
}
} /**
* 正序视图
*/
static final class AscendingSubMap<K,V> extends NavigableSubMap<K,V> {
private static final long serialVersionUID = 912986545866124060L; AscendingSubMap(TreeMap<K,V> m,
boolean fromStart, K lo, boolean loInclusive,
boolean toEnd, K hi, boolean hiInclusive) {
super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive);
} public Comparator<? super K> comparator() {
return m.comparator();
} public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
K toKey, boolean toInclusive) {
if (!inRange(fromKey, fromInclusive))
throw new IllegalArgumentException("fromKey out of range");
if (!inRange(toKey, toInclusive))
throw new IllegalArgumentException("toKey out of range");
return new AscendingSubMap<>(m,
false, fromKey, fromInclusive,
false, toKey, toInclusive);
} public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
if (!inRange(toKey, inclusive))
throw new IllegalArgumentException("toKey out of range");
return new AscendingSubMap<>(m,
fromStart, lo, loInclusive,
false, toKey, inclusive);
} public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive) {
if (!inRange(fromKey, inclusive))
throw new IllegalArgumentException("fromKey out of range");
return new AscendingSubMap<>(m,
false, fromKey, inclusive,
toEnd, hi, hiInclusive);
} public NavigableMap<K,V> descendingMap() {
NavigableMap<K,V> mv = descendingMapView;
return (mv != null) ? mv :
(descendingMapView =
new DescendingSubMap<>(m,
fromStart, lo, loInclusive,
toEnd, hi, hiInclusive));
} Iterator<K> keyIterator() {
return new SubMapKeyIterator(absLowest(), absHighFence());
} Spliterator<K> keySpliterator() {
return new SubMapKeyIterator(absLowest(), absHighFence());
} Iterator<K> descendingKeyIterator() {
return new DescendingSubMapKeyIterator(absHighest(), absLowFence());
} final class AscendingEntrySetView extends EntrySetView {
public Iterator<Map.Entry<K,V>> iterator() {
return new SubMapEntryIterator(absLowest(), absHighFence());
}
} public Set<Map.Entry<K,V>> entrySet() {
EntrySetView es = entrySetView;
return (es != null) ? es : (entrySetView = new AscendingEntrySetView());
} TreeMap.Entry<K,V> subLowest() { return absLowest(); }
TreeMap.Entry<K,V> subHighest() { return absHighest(); }
TreeMap.Entry<K,V> subCeiling(K key) { return absCeiling(key); }
TreeMap.Entry<K,V> subHigher(K key) { return absHigher(key); }
TreeMap.Entry<K,V> subFloor(K key) { return absFloor(key); }
TreeMap.Entry<K,V> subLower(K key) { return absLower(key); }
} /**
* 逆序视图
*/
static final class DescendingSubMap<K,V> extends NavigableSubMap<K,V> {
private static final long serialVersionUID = 912986545866120460L;
DescendingSubMap(TreeMap<K,V> m,
boolean fromStart, K lo, boolean loInclusive,
boolean toEnd, K hi, boolean hiInclusive) {
super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive);
} private final Comparator<? super K> reverseComparator =
Collections.reverseOrder(m.comparator); public Comparator<? super K> comparator() {
return reverseComparator;
} public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
K toKey, boolean toInclusive) {
if (!inRange(fromKey, fromInclusive))
throw new IllegalArgumentException("fromKey out of range");
if (!inRange(toKey, toInclusive))
throw new IllegalArgumentException("toKey out of range");
return new DescendingSubMap<>(m,
false, toKey, toInclusive,
false, fromKey, fromInclusive);
} public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
if (!inRange(toKey, inclusive))
throw new IllegalArgumentException("toKey out of range");
return new DescendingSubMap<>(m,
false, toKey, inclusive,
toEnd, hi, hiInclusive);
} public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive) {
if (!inRange(fromKey, inclusive))
throw new IllegalArgumentException("fromKey out of range");
return new DescendingSubMap<>(m,
fromStart, lo, loInclusive,
false, fromKey, inclusive);
} public NavigableMap<K,V> descendingMap() {
NavigableMap<K,V> mv = descendingMapView;
return (mv != null) ? mv :
(descendingMapView =
new AscendingSubMap<>(m,
fromStart, lo, loInclusive,
toEnd, hi, hiInclusive));
} Iterator<K> keyIterator() {
return new DescendingSubMapKeyIterator(absHighest(), absLowFence());
} Spliterator<K> keySpliterator() {
return new DescendingSubMapKeyIterator(absHighest(), absLowFence());
} Iterator<K> descendingKeyIterator() {
return new SubMapKeyIterator(absLowest(), absHighFence());
} final class DescendingEntrySetView extends EntrySetView {
public Iterator<Map.Entry<K,V>> iterator() {
return new DescendingSubMapEntryIterator(absHighest(), absLowFence());
}
} public Set<Map.Entry<K,V>> entrySet() {
EntrySetView es = entrySetView;
return (es != null) ? es : (entrySetView = new DescendingEntrySetView());
} TreeMap.Entry<K,V> subLowest() { return absHighest(); }
TreeMap.Entry<K,V> subHighest() { return absLowest(); }
TreeMap.Entry<K,V> subCeiling(K key) { return absFloor(key); }
TreeMap.Entry<K,V> subHigher(K key) { return absLower(key); }
TreeMap.Entry<K,V> subFloor(K key) { return absCeiling(key); }
TreeMap.Entry<K,V> subLower(K key) { return absHigher(key); }
} /**
* 视图,
*/
private class SubMap extends AbstractMap<K,V>
implements SortedMap<K,V>, java.io.Serializable {
private static final long serialVersionUID = -6520786458950516097L;
private boolean fromStart = false, toEnd = false;
private K fromKey, toKey;
private Object readResolve() {
return new AscendingSubMap<>(TreeMap.this,
fromStart, fromKey, true,
toEnd, toKey, false);
}
public Set<Map.Entry<K,V>> entrySet() { throw new InternalError(); }
public K lastKey() { throw new InternalError(); }
public K firstKey() { throw new InternalError(); }
public SortedMap<K,V> subMap(K fromKey, K toKey) { throw new InternalError(); }
public SortedMap<K,V> headMap(K toKey) { throw new InternalError(); }
public SortedMap<K,V> tailMap(K fromKey) { throw new InternalError(); }
public Comparator<? super K> comparator() { throw new InternalError(); }
} // 表示红黑树接电点的颜色 private static final boolean RED = false;
private static final boolean BLACK = true; /**
* 节点类,用来存储TreeMap每个节点的信息
*/
static final class Entry<K,V> implements Map.Entry<K,V> {
K key;//键
V value;//值
Entry<K,V> left;//左子节点
Entry<K,V> right;//右子节点
Entry<K,V> parent;//父节点
boolean color = BLACK;//节点颜色,默认为黑色 /**
* 构造方法
*/
Entry(K key, V value, Entry<K,V> parent) {
this.key = key;
this.value = value;
this.parent = parent;
} /**
* 返回key
*/
public K getKey() {
return key;
} /**
* 返回value
*/
public V getValue() {
return value;
} /**
* 设置value
*/
public V setValue(V value) {
V oldValue = this.value;
this.value = value;
return oldValue;
} /**
* 判断节点和对象是否相等
*/
public boolean equals(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<?,?> e = (Map.Entry<?,?>)o; return valEquals(key,e.getKey()) && valEquals(value,e.getValue());
} /**
* 返回节点的hashcode值,是节点的key和value的hashcode然后进行与运算
*/
public int hashCode() {
int keyHash = (key==null ? 0 : key.hashCode());
int valueHash = (value==null ? 0 : value.hashCode());
return keyHash ^ valueHash;
} public String toString() {
return key + "=" + value;
}
} /**
* 获取第一个节点,也是最小的节点
*/
final Entry<K,V> getFirstEntry() {
Entry<K,V> p = root;
if (p != null)
while (p.left != null)
p = p.left;
return p;
} /**
* 获取最后一个节点,也是最大节点
*/
final Entry<K,V> getLastEntry() {
Entry<K,V> p = root;
if (p != null)
while (p.right != null)
p = p.right;
return p;
} /**
* 返回节点t的后继节点,也就是大于t节点的最小节点
*/
static <K,V> TreeMap.Entry<K,V> successor(Entry<K,V> t) {
if (t == null)
return null;
else if (t.right != null) {//如果该节点有右子节点,就找右子节点的 左子节点,一直往下找
Entry<K,V> p = t.right;
while (p.left != null)
p = p.left;
return p;
} else {//如果该节点没有右子节点,就向上找
Entry<K,V> p = t.parent;
Entry<K,V> ch = t;
while (p != null && ch == p.right) {//如果当前节点是父节点的右子节点,就一直往上找,直到找到一个节点是其父节点的左子节点,那个父节点就是要找的节点
ch = p;
p = p.parent;
}
return p;
}
} /**
* 返回小于t的最大节点。
*/
static <K,V> Entry<K,V> predecessor(Entry<K,V> t) {
if (t == null)
return null;
else if (t.left != null) {//如果该节点寸在左子节点,那么要找的节点就是左子节点的右子节点(一直找到最后一个)
Entry<K,V> p = t.left;
while (p.right != null)
p = p.right;
return p;
} else {//如果该节点没有左子节点,就一直往上找,直到找到一个节点是其父节点的右子节点,那个父节点就是要找的节点
Entry<K,V> p = t.parent;
Entry<K,V> ch = t;
while (p != null && ch == p.left) {
ch = p;
p = p.parent;
}
return p;
}
} //返回节点的颜色
private static <K,V> boolean colorOf(Entry<K,V> p) {
return (p == null ? BLACK : p.color);
}
//返回节点的父节点
private static <K,V> Entry<K,V> parentOf(Entry<K,V> p) {
return (p == null ? null: p.parent);
}
//设置节点的颜色
private static <K,V> void setColor(Entry<K,V> p, boolean c) {
if (p != null)
p.color = c;
}
//返回节点的左子节点
private static <K,V> Entry<K,V> leftOf(Entry<K,V> p) {
return (p == null) ? null: p.left;
}
//返回节点的右子节点
private static <K,V> Entry<K,V> rightOf(Entry<K,V> p) {
return (p == null) ? null: p.right;
} /** From CLR 左旋的过程是将p的右子树绕p逆时针旋转,使得p的右子树成为p的父亲,同时修改相关节点的引用。旋转之后,二叉查找树的属性仍然满足。*/
private void rotateLeft(Entry<K,V> p) {
if (p != null) {
Entry<K,V> r = p.right;
p.right = r.left;
if (r.left != null)
r.left.parent = p;
r.parent = p.parent;
if (p.parent == null)
root = r;
else if (p.parent.left == p)
p.parent.left = r;
else
p.parent.right = r;
r.left = p;
p.parent = r;
}
} /** From CLR 右旋的过程是将p的左子树绕p顺时针旋转,使得p的左子树成为p的父亲,同时修改相关节点的引用。旋转之后,二叉查找树的属性仍然满足。 */
private void rotateRight(Entry<K,V> p) {
if (p != null) {
Entry<K,V> l = p.left;
p.left = l.right;
if (l.right != null) l.right.parent = p;
l.parent = p.parent;
if (p.parent == null)
root = l;
else if (p.parent.right == p)
p.parent.right = l;
else p.parent.left = l;
l.right = p;
p.parent = l;
}
} /** From CLR 在加入新的节点后,树的平衡有可能被破坏,所以需要对TreeMap的树结构进行修复*/
private void fixAfterInsertion(Entry<K,V> x) {
x.color = RED;//先将当前接节点的颜色设置为红 while (x != null && x != root && x.parent.color == RED) {//如果父节点是黑色的,那么无需进行任何操作。
if (parentOf(x) == leftOf(parentOf(parentOf(x)))) {//如果父节点是祖节点的左子节点
Entry<K,V> y = rightOf(parentOf(parentOf(x)));//祖节点的右子节点,就称为当前节点的叔节点
if (colorOf(y) == RED) {//如果叔节点的颜色为red,则祖节点肯定为黑色。这样直接将父节点和叔节点都设置为黑色,祖节点设置为红色
setColor(parentOf(x), BLACK);
setColor(y, BLACK);
setColor(parentOf(parentOf(x)), RED);
x = parentOf(parentOf(x));//以祖节点为基准点继续上述操作
} else {//如果叔节点为黑色
if (x == rightOf(parentOf(x))) {//如果当前节点是父节点的右子节点,以父节点为基准点,然后对父节点进行左旋。
x = parentOf(x);
rotateLeft(x);
}
setColor(parentOf(x), BLACK);//将基准节点的父节点变黑,祖节点变红,对祖节点进行右旋操作
setColor(parentOf(parentOf(x)), RED);
rotateRight(parentOf(parentOf(x)));
}
} else {//如果父节点是祖节点的右子节点
Entry<K,V> y = leftOf(parentOf(parentOf(x)));
if (colorOf(y) == RED) {//如果叔节点为红色,就将叔节点和父节点都设置为黑色,祖节点设置为红色。再以祖节点作为基准点继续上述操作
setColor(parentOf(x), BLACK);
setColor(y, BLACK);
setColor(parentOf(parentOf(x)), RED);
x = parentOf(parentOf(x));
} else {//如果叔节点是黑色
if (x == leftOf(parentOf(x))) {//如果当前节点是父节点的左子节点,就以父节点为基准节点进行右旋操作。
x = parentOf(x);
rotateRight(x);
}
setColor(parentOf(x), BLACK);//将基准点的父节点设置为黑色,祖节点设置为红色。然后对基准点的祖节点进行左旋操作
setColor(parentOf(parentOf(x)), RED);
rotateLeft(parentOf(parentOf(x)));
}
}
}
root.color = BLACK;//将根节点设置为黑色
} /**
* 删除节点并重新平衡整棵树,使它符合红黑树
*/
private void deleteEntry(Entry<K,V> p) {
modCount++;
size--; //将p的后继节点的key和value赋值给p然后将p指向p的后继节点
if (p.left != null && p.right != null) {
Entry<K,V> s = successor(p);
p.key = s.key;
p.value = s.value;
p = s;
} // p has 2 children // Start fixup at replacement node, if it exists.
//开始修正替代节点,如果它存在
Entry<K,V> replacement = (p.left != null ? p.left : p.right); if (replacement != null) {//如果替代节点存在
// Link replacement to parent
replacement.parent = p.parent;
if (p.parent == null)//将p节点的父节点设置为replacement的父节点,如果p节点的父节点不存在,则将replacement设置为根节点
root = replacement;
else if (p == p.parent.left)//如果p节点的父节点存在,就将replacement替换掉
p.parent.left = replacement;
else
p.parent.right = replacement; // Null out links so they are OK to use by fixAfterDeletion.
//将p节点和其他的节点之间断开联系
p.left = p.right = p.parent = null; // Fix replacement
if (p.color == BLACK)//如果p节点的颜色是黑色,就需要对树结构进行调整
fixAfterDeletion(replacement);
} else if (p.parent == null) { // return if we are the only node.
root = null;
} else { // No children. Use self as phantom replacement and unlink.
if (p.color == BLACK)
fixAfterDeletion(p); if (p.parent != null) {
if (p == p.parent.left)
p.parent.left = null;
else if (p == p.parent.right)
p.parent.right = null;
p.parent = null;
}
}
} /** From CLR 删除节点后将树修复为红黑树结构*/
private void fixAfterDeletion(Entry<K,V> x) {
while (x != root && colorOf(x) == BLACK) {
if (x == leftOf(parentOf(x))) {
Entry<K,V> sib = rightOf(parentOf(x)); if (colorOf(sib) == RED) {
setColor(sib, BLACK);
setColor(parentOf(x), RED);
rotateLeft(parentOf(x));
sib = rightOf(parentOf(x));
} if (colorOf(leftOf(sib)) == BLACK &&
colorOf(rightOf(sib)) == BLACK) {
setColor(sib, RED);
x = parentOf(x);
} else {
if (colorOf(rightOf(sib)) == BLACK) {
setColor(leftOf(sib), BLACK);
setColor(sib, RED);
rotateRight(sib);
sib = rightOf(parentOf(x));
}
setColor(sib, colorOf(parentOf(x)));
setColor(parentOf(x), BLACK);
setColor(rightOf(sib), BLACK);
rotateLeft(parentOf(x));
x = root;
}
} else { // symmetric
Entry<K,V> sib = leftOf(parentOf(x)); if (colorOf(sib) == RED) {
setColor(sib, BLACK);
setColor(parentOf(x), RED);
rotateRight(parentOf(x));
sib = leftOf(parentOf(x));
} if (colorOf(rightOf(sib)) == BLACK &&
colorOf(leftOf(sib)) == BLACK) {
setColor(sib, RED);
x = parentOf(x);
} else {
if (colorOf(leftOf(sib)) == BLACK) {
setColor(rightOf(sib), BLACK);
setColor(sib, RED);
rotateLeft(sib);
sib = leftOf(parentOf(x));
}
setColor(sib, colorOf(parentOf(x)));
setColor(parentOf(x), BLACK);
setColor(leftOf(sib), BLACK);
rotateRight(parentOf(x));
x = root;
}
}
} setColor(x, BLACK);
} private static final long serialVersionUID = 919286545866124006L; /**
* 从流中读取对象
*/
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException {
// Write out the Comparator and any hidden stuff
s.defaultWriteObject(); // Write out size (number of Mappings)
s.writeInt(size); // Write out keys and values (alternating)
for (Iterator<Map.Entry<K,V>> i = entrySet().iterator(); i.hasNext(); ) {
Map.Entry<K,V> e = i.next();
s.writeObject(e.getKey());
s.writeObject(e.getValue());
}
} /**
* 将对象写入流中
*/
private void readObject(final java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
// Read in the Comparator and any hidden stuff
s.defaultReadObject(); // Read in size
int size = s.readInt(); buildFromSorted(size, null, s, null);
} /** Intended to be called only from TreeSet.readObject */
void readTreeSet(int size, java.io.ObjectInputStream s, V defaultVal)
throws java.io.IOException, ClassNotFoundException {
buildFromSorted(size, null, s, defaultVal);
} /** Intended to be called only from TreeSet.addAll */
void addAllForTreeSet(SortedSet<? extends K> set, V defaultVal) {
try {
buildFromSorted(set.size(), set.iterator(), null, defaultVal);
} catch (java.io.IOException cannotHappen) {
} catch (ClassNotFoundException cannotHappen) {
}
} /**
* Linear time tree building algorithm from sorted data. Can accept keys
* and/or values from iterator or stream. This leads to too many
* parameters, but seems better than alternatives. The four formats
* that this method accepts are:
*
* 1) An iterator of Map.Entries. (it != null, defaultVal == null).
* 2) An iterator of keys. (it != null, defaultVal != null).
* 3) A stream of alternating serialized keys and values.
* (it == null, defaultVal == null).
* 4) A stream of serialized keys. (it == null, defaultVal != null).
*
* It is assumed that the comparator of the TreeMap is already set prior
* to calling this method.
*
* @param size the number of keys (or key-value pairs) to be read from
* the iterator or stream
* @param it If non-null, new entries are created from entries
* or keys read from this iterator.
* @param str If non-null, new entries are created from keys and
* possibly values read from this stream in serialized form.
* Exactly one of it and str should be non-null.
* @param defaultVal if non-null, this default value is used for
* each value in the map. If null, each value is read from
* iterator or stream, as described above.
* @throws java.io.IOException propagated from stream reads. This cannot
* occur if str is null.
* @throws ClassNotFoundException propagated from readObject.
* This cannot occur if str is null.
*/
private void buildFromSorted(int size, Iterator<?> it,
java.io.ObjectInputStream str,
V defaultVal)
throws java.io.IOException, ClassNotFoundException {
this.size = size;
root = buildFromSorted(0, 0, size-1, computeRedLevel(size),
it, str, defaultVal);
} /**
* Recursive "helper method" that does the real work of the
* previous method. Identically named parameters have
* identical definitions. Additional parameters are documented below.
* It is assumed that the comparator and size fields of the TreeMap are
* already set prior to calling this method. (It ignores both fields.)
*
* @param level the current level of tree. Initial call should be 0.
* @param lo the first element index of this subtree. Initial should be 0.
* @param hi the last element index of this subtree. Initial should be
* size-1.
* @param redLevel the level at which nodes should be red.
* Must be equal to computeRedLevel for tree of this size.
*/
@SuppressWarnings("unchecked")
private final Entry<K,V> buildFromSorted(int level, int lo, int hi,
int redLevel,
Iterator<?> it,
java.io.ObjectInputStream str,
V defaultVal)
throws java.io.IOException, ClassNotFoundException {
/*
* Strategy: The root is the middlemost element. To get to it, we
* have to first recursively construct the entire left subtree,
* so as to grab all of its elements. We can then proceed with right
* subtree.
*
* The lo and hi arguments are the minimum and maximum
* indices to pull out of the iterator or stream for current subtree.
* They are not actually indexed, we just proceed sequentially,
* ensuring that items are extracted in corresponding order.
*/ if (hi < lo) return null; int mid = (lo + hi) >>> 1; Entry<K,V> left = null;
if (lo < mid)
left = buildFromSorted(level+1, lo, mid - 1, redLevel,
it, str, defaultVal); // extract key and/or value from iterator or stream
K key;
V value;
if (it != null) {
if (defaultVal==null) {
Map.Entry<?,?> entry = (Map.Entry<?,?>)it.next();
key = (K)entry.getKey();
value = (V)entry.getValue();
} else {
key = (K)it.next();
value = defaultVal;
}
} else { // use stream
key = (K) str.readObject();
value = (defaultVal != null ? defaultVal : (V) str.readObject());
} Entry<K,V> middle = new Entry<>(key, value, null); // color nodes in non-full bottommost level red
if (level == redLevel)
middle.color = RED; if (left != null) {
middle.left = left;
left.parent = middle;
} if (mid < hi) {
Entry<K,V> right = buildFromSorted(level+1, mid+1, hi, redLevel,
it, str, defaultVal);
middle.right = right;
right.parent = middle;
} return middle;
} /**
* Find the level down to which to assign all nodes BLACK. This is the
* last `full' level of the complete binary tree produced by
* buildTree. The remaining nodes are colored RED. (This makes a `nice'
* set of color assignments wrt future insertions.) This level number is
* computed by finding the number of splits needed to reach the zeroeth
* node. (The answer is ~lg(N), but in any case must be computed by same
* quick O(lg(N)) loop.)
*/
private static int computeRedLevel(int sz) {
int level = 0;
for (int m = sz - 1; m >= 0; m = m / 2 - 1)
level++;
return level;
} }
二、TreeMap的特点
1、存入TreeMap的键值对的key是要能自然排序的(实现了Comparable接口),否则就要自定义一个比较器Comparator作为参数传入构造函数。
2、TreeMap是以红黑树将数据组织在一起,在添加或者删除节点的时候有可能将红黑树的结构破坏了,所以需要判断是否对红黑树进行修复。
3、由于底层是红黑树结构,所以TreeMap的基本操作 containsKey、get、put 和 remove 的时间复杂度是 log(n) 。
4、由于TreeMap实现了NavigableMap,所以TreeMap有一系列的导航方法。
三、比较器Comparator和实现Comparable接口
TreeMap中的键值对key要么是可比较的,要么就是TreeMap中有比较器,否则无法加入TreeMap中。
1、创建比较器需要实现Comparator接口,然后实现其compare方法。使用比较器的时候只需要创建一个比较器实例然后传入TreeMap的构造器
2、创建一个类实现Comparable接口,然后实现compareTo方法,是对象可比较
3、如果key本身具有自然比较性,同时TreeMap也有比较器那么用比较器进行比较。
4、如果是通过key的自身排序则key不能为null,如果是通过自定义比较器,那么就看自己定义比较器的逻辑了。
//自定义比较器
public class MyComparator implements Comparator<MyEntity> { @Override
public int compare(MyEntity e1, MyEntity e2) { int f = e1 == null ? (e2 == null ? 0 : -1) : (e2 == null ? 1 : 2); if(f == 2){
if(e1.getValue() > e2.getValue()){
return 1;
}else if(e1.getValue() < e2.getValue()){
return -1;
}else{
return 0;
}
}
return f;
} }
...
//让对象可比较
public class MyEntity implements Comparable<MyEntity>{ private String name; private int value; public MyEntity(String name, int value) {
super();
this.name = name;
this.value = value;
} public String getName() {
return name;
} public void setName(String name) {
this.name = name;
} public int getValue() {
return value;
} public void setValue(int value) {
this.value = value;
} @Override
public String toString() {
return "MyEntity [name=" + name + ", value=" + value + "]";
} @Override
public int compareTo(MyEntity e) {
if(value > e.getValue()){
return 1;
}else if(value < e.getValue()){
return -1;
}else{
return 0;
}
}
}
Java数据结构之TreeMap的更多相关文章
- Java集合之TreeMap
Map的单元是对键值对的处理,之前分析过的两种Map,HashMap和LinkedHashMap都是用哈希值去寻找我们想要的键值对,优点是由O(1)的查找速度. 那如果我们在一个对查找性能要求不那么高 ...
- Java提高篇---TreeMap
TreeMap的实现是红黑树算法的实现,所以要了解TreeMap就必须对红黑树有一定的了解,其实这篇博文的名字叫做:根据红黑树的算法来分析TreeMap的实现,但是为了与Java提高篇系列博文保持一致 ...
- Java数据结构之树和二叉树
从这里开始将要进行Java数据结构的相关讲解,Are you ready?Let's go~~ Java中的数据结构模型可以分为一下几部分: 1.线性结构 2.树形结构 3.图形或者网状结构 接下来的 ...
- java集合类之TreeMap
转自:http://blog.csdn.net/chenssy/article/details/26668941 TreeMap的实现是红黑树算法的实现,所以要了解TreeMap就必须对红黑树有一定的 ...
- Java数据结构和算法 - 二叉树
前言 数据结构可划分为线性结构.树型结构和图型结构三大类.前面几篇讨论了数组.栈和队列.链表都是线性结构.树型结构中每个结点只允许有一个直接前驱结点,但允许有一个以上直接后驱结点.树型结构有树和二叉树 ...
- (6)Java数据结构-- 转:JAVA常用数据结构及原理分析
JAVA常用数据结构及原理分析 http://www.2cto.com/kf/201506/412305.html 前不久面试官让我说一下怎么理解java数据结构框架,之前也看过部分源码,balab ...
- Java数据结构和算法(一)树
Java数据结构和算法(一)树 数据结构与算法目录(https://www.cnblogs.com/binarylei/p/10115867.html) 前面讲到的链表.栈和队列都是一对一的线性结构, ...
- Java数据结构和算法(二)树的基本操作
Java数据结构和算法(二)树的基本操作 数据结构与算法目录(https://www.cnblogs.com/binarylei/p/10115867.html) 一.树的遍历 二叉树遍历分为:前序遍 ...
- Java数据结构之队列的实现以及队列的应用之----简单生产者消费者应用
Java数据结构之---Queue队列 队列(简称作队,Queue)也是一种特殊的线性表,队列的数据元素以及数据元素间的逻辑关系和线性表完全相同,其差别是线性表允许在任意位置插入和删除,而队列只允许在 ...
随机推荐
- Python3+Appium学习笔记02-环境配置(下)
配置所需软件及我当前使用的版本: 1)java jdk 1.8.0 2)android sdk 24.4.1 3)Python3 3.7.3 4)Appium-Python-Client 5)n ...
- async 与 await
async 关键字 1.含义:表示函数是一个异步函数,意味着该函数的执行不会阻塞后面代码的执行 2.定义与调用 async function hello (flag) { if (flag) { re ...
- python 前置程序窗口,还原最小化的窗口
python 前置程序窗口,还原最小化的窗口 在网上找了比较久,大多是: win32gui.FindWindow(class_name, window_name) win32gui.SetForegr ...
- 【转载】解决繁体、日文游戏乱码的五种方法 转载自:http://tieba.baidu.com/p/488627981
方法1:转换区域 开始——设置——控制面板——区域和语言选项——分别选择“高级”和“区域选项”标签——在其下拉框中都选择“日语”(或“日本”)(选项有点多,慢慢找)——重启后即可生效. *某影注:日语 ...
- [HBase]region compaction流程
- crontab踩坑(二):Unit crond.service could not be found.
这是因为Ubuntu上的服务名称是cron不是crond.所以你的命令应该是: sudo service cron start
- Luogu P2511 [HAOI2008]木棍分割 二分+DP
思路:二分+DP 提交:3次 错因:二分写萎了,$cnt$记录段数但没有初始化成$1$,$m$切的次数没有$+1$ 思路: 先二分答案,不提: 然后有个很$naive$的$DP$: 设$f[i][j] ...
- PHP mysqli_get_connection_stats() 函数
定义和用法 mysqli_get_connection_stats() 函数返回有关客户端连接的统计. 语法 mysqli_get_connection_stats(connection); 返回有关 ...
- Codevs 1331 西行寺幽幽子(高精度)
1331 西行寺幽幽子 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 在幻想乡,西行寺幽幽子是以贪吃闻名的亡灵.不过幽幽子可不是只 ...
- windbg双机调试配置[转]
原文 windbg已不提供单独下载,wdk驱动开发工具包里附带有这个调试器.官网提供下载: http://msdn.microsoft.com/en-us/windows/hardware/gg487 ...