Design a search autocomplete system for a search engine. Users may input a sentence (at least one word and end with a special character '#'). For each character they type except '#', you need to return the top 3historical hot sentences that have prefix the same as the part of sentence already typed. Here are the specific rules:

  1. The hot degree for a sentence is defined as the number of times a user typed the exactly same sentence before.
  2. The returned top 3 hot sentences should be sorted by hot degree (The first is the hottest one). If several sentences have the same degree of hot, you need to use ASCII-code order (smaller one appears first).
  3. If less than 3 hot sentences exist, then just return as many as you can.
  4. When the input is a special character, it means the sentence ends, and in this case, you need to return an empty list.

Your job is to implement the following functions:

The constructor function:

AutocompleteSystem(String[] sentences, int[] times): This is the constructor. The input is historical data. Sentences is a string array consists of previously typed sentences. Times is the corresponding times a sentence has been typed. Your system should record these historical data.

Now, the user wants to input a new sentence. The following function will provide the next character the user types:

List<String> input(char c): The input c is the next character typed by the user. The character will only be lower-case letters ('a' to 'z'), blank space (' ') or a special character ('#'). Also, the previously typed sentence should be recorded in your system. The output will be the top 3 historical hot sentences that have prefix the same as the part of sentence already typed.

Example:
Operation: AutocompleteSystem(["i love you", "island","ironman", "i love leetcode"], [5,3,2,2]) 
The system have already tracked down the following sentences and their corresponding times: 
"i love you" : 5 times 
"island" : 3 times 
"ironman" : 2 times 
"i love leetcode" : 2 times 
Now, the user begins another search:

Operation: input('i') 
Output: ["i love you", "island","i love leetcode"] 
Explanation: 
There are four sentences that have prefix "i". Among them, "ironman" and "i love leetcode" have same hot degree. Since ' ' has ASCII code 32 and 'r' has ASCII code 114, "i love leetcode" should be in front of "ironman". Also we only need to output top 3 hot sentences, so "ironman" will be ignored.

Operation: input(' ') 
Output: ["i love you","i love leetcode"] 
Explanation: 
There are only two sentences that have prefix "i ".

Operation: input('a') 
Output: [] 
Explanation: 
There are no sentences that have prefix "i a".

Operation: input('#') 
Output: [] 
Explanation: 
The user finished the input, the sentence "i a" should be saved as a historical sentence in system. And the following input will be counted as a new search.

 class AutocompleteSystem {
private final Map<String, Integer> cache = new HashMap<String, Integer>();
private String input = ""; public AutocompleteSystem(String[] sentences, int[] times) {
for (int i = ; i < sentences.length; i++) {
cache.put(sentences[i], times[i]);
}
} public List<String> input(char c) {
if (c == '#') {
Integer count = cache.getOrDefault(input, );
cache.put(input, ++count);
input = "";
return Collections.emptyList();
} input += c;
return cache.entrySet().stream()
.filter(e -> e.getKey().startsWith(input))
.sorted(Map.Entry.<String, Integer>comparingByValue(Comparator.reverseOrder())
.thenComparing(Map.Entry.comparingByKey()))
.limit()
.map(Map.Entry::getKey)
.collect(Collectors.toCollection(ArrayList::new));
}
}
 class AutocompleteSystem {
class TrieNode {
Map<Character, TrieNode> children;
Map<String, Integer> counts;
boolean isWord; public TrieNode() {
children = new HashMap<>();
counts = new HashMap<>();
isWord = false;
}
} TrieNode root;
String prefix; public AutocompleteSystem(String[] sentences, int[] times) {
root = new TrieNode();
prefix = "";
for (int i = ; i < sentences.length; i++) {
add(sentences[i], times[i]);
}
} private void add(String s, int count) {
TrieNode cur = root;
for (char c : s.toCharArray()) {
TrieNode next = cur.children.get(c);
if (next == null) {
next = new TrieNode();
cur.children.put(c, next);
}
cur = next;
cur.counts.put(s, cur.counts.getOrDefault(s, ) + count);
}
cur.isWord = true;
} public List<String> input(char c) {
if (c == '#') {
add(prefix, );
prefix = "";
return new ArrayList<String>();
} prefix = prefix + c;
TrieNode cur = root;
for (char ch : prefix.toCharArray()) {
TrieNode next = cur.children.get(ch);
if (next == null) {
return new ArrayList<String>();
}
cur = next;
} PriorityQueue<Map.Entry<String, Integer>> pq = new PriorityQueue<>((a,
b) -> (a.getValue() == b.getValue() ? a.getKey().compareTo(b.getKey()) : b.getValue() - a.getValue()));
for (Map.Entry<String, Integer> entry : cur.counts.entrySet()) {
pq.add(entry);
} List<String> res = new ArrayList<>();
for (int i = ; i < && !pq.isEmpty(); i++) {
res.add(pq.poll().getKey());
}
return res;
}
}

Design Search Autocomplete System的更多相关文章

  1. [LeetCode] Design Search Autocomplete System 设计搜索自动补全系统

    Design a search autocomplete system for a search engine. Users may input a sentence (at least one wo ...

  2. [LeetCode] 642. Design Search Autocomplete System 设计搜索自动补全系统

    Design a search autocomplete system for a search engine. Users may input a sentence (at least one wo ...

  3. [LeetCode] Design Log Storage System 设计日志存储系统

    You are given several logs that each log contains a unique id and timestamp. Timestamp is a string t ...

  4. 【leetcode】1268. Search Suggestions System

    题目如下: Given an array of strings products and a string searchWord. We want to design a system that su ...

  5. [LeetCode] Design In-Memory File System 设计内存文件系统

    Design an in-memory file system to simulate the following functions: ls: Given a path in string form ...

  6. How to make a combo box with fulltext search autocomplete support?

    I would like a user to be able to type in the second or third word from a TComboBoxitem and for that ...

  7. LeetCode Design Log Storage System

    原题链接在这里:https://leetcode.com/problems/design-log-storage-system/description/ 题目: You are given sever ...

  8. Binary search tree system and method

    A binary search tree is provided for efficiently organizing values for a set of items, even when val ...

  9. Design In-Memory File System

    Design an in-memory file system to simulate the following functions: ls: Given a path in string form ...

随机推荐

  1. js判断是否是app,及版本号

    判断是否是android,ios,qq,wetchat export const Config = {}; Config.ua = navigator.userAgent.toLowerCase(); ...

  2. Xshell远程连接的具体操作和Xshell多会话设置小技巧

    前几天给大家分享了Xshell的安装教程,今天给大家分享如何在Xshell中进行远程连接,并且分享一下如何设置一条命令可以发送多个终端,这里以Xshell6为例进行说明,具体的教程如下. 1.依次点击 ...

  3. Hive运行原理--JOIN

    对于 JOIN 操作: INSERT OVERWRITE TABLE pv_users SELECT pv.pageid, u.age FROM page_view pv JOIN user u ON ...

  4. smarty 模板中输出时间戳为年月日格式

    日期:{:date('Y-m-d',$v['addtime'])}  // $v['addtime']数据库中的时间戳 输出结果: 日期:{:date('Y-m-d H:i:s',$v['addtim ...

  5. Note 2 for <Pratical Programming : An Introduction to Computer Science Using Python 3>

    Book Imformation : <Pratical Programming : An Introduction to Computer Science Using Python 3> ...

  6. DP&图论 DAY 2 下午

    DP&图论  DAY 2  下午 基础树形DP 前言◦ 1:与树或图的生成树相关的动态规划.◦ 2:以每棵子树为子结构,在父亲节点合并,注意树具有天然的子结构.这是很优美的很利于dp的.◦ 3 ...

  7. Hibernate3核心API-Configuration类

  8. 解决 Elasticsearch 超过 10000 条无法查询的问题

    解决 Elasticsearch 超过 10000 条无法查询的问题 问题描述 分页查询场景,当查询记录数超过 10000 条时,会报错. 使用 Kibana 的 Dev Tools 工具查询 从第 ...

  9. Redis 几个类型常用命令

    Redis 字符串(String) 下表列出了常用的 redis 字符串命令: 序号 命令及描述1 SET key value 设置指定 key 的值2 GET key 获取指定 key 的值.3 G ...

  10. python识别图片中的信息

    好好学习的第一步 一心一意的干好一件事儿,问自己 我做什么 我怎么做 做的结果是啥 例子1 问题 回答 我做什么: 识别图片上的信息 我怎么做: 百度+谷歌 结果是啥: 完成识别 1 安装PIL pi ...