D-【乐】k进制数(同余)
题目
https://ac.nowcoder.com/acm/contest/907/D
做法
\((x)_k\)定义编号,如果\(a+b\)加到一起能进一位,\(a+b\rightarrow 1+(a+b-k)=a+b-(k-1)\),故\(d(a_{l,r})=\sum\limits_{i=l}^r a_i\% k-1\)
但我们发现\(k-1\)这一块缺失了,显然为\(0\)当且仅当区间均为\(0\),其他情况得出\(0\)的时候实际结果为\(k-1\)
\(b=0\):全\(0\)区间个数
\(b=k-1\):满足\(/%(k-1)=0\)的个数-全\(0\)区间个数
其他情况:\(a_{l,r}=sum_r-sum_{l-1}\%(k-1),sum_r-sum_{l-1}\equiv b (\%k-1),sum_r-b\equiv sum_{l-1}(\%k-1)\)
Code
#include<bits/stdc++.h>
typedef long long LL;
const LL maxn=1e6+9;
inline LL Read(){
LL x(0),f(1); char c=getchar();
while(c<'0' || c>'9'){
if(c=='-') f=-1; c=getchar();
}
while(c>='0' && c<='9'){
x=(x<<3)+(x<<1)+c-'0'; c=getchar();
}return x*f;
}
LL k,b,n,ret,num,ze;
LL a[maxn],sum[maxn];
std::map<LL,LL> cnt;
int main(){
k=Read(); b=Read(); n=Read();
for(LL i=1;i<=n;++i) a[i]=Read();
for(LL i=1;i<=n;++i){
sum[i]=(sum[i-1]+a[i])%(k-1);
if(!a[i]){
++num;
ze+=num;
}else
num=0;
}
if(!b){
printf("%lld\n",ze);
return 0;
}
cnt[0]++;
for(LL i=1;i<=n;++i){
LL val((sum[i]-b+k-1)%(k-1));
ret+=cnt[val];
++cnt[sum[i]];
}
if(b==k-1) ret-=ze;
printf("%lld\n",ret);
return 0;
}
D-【乐】k进制数(同余)的更多相关文章
- CF459C Pashmak and Buses (构造d位k进制数
C - Pashmak and Buses Codeforces Round #261 (Div. 2) C. Pashmak and Buses time limit per test 1 seco ...
- P1066 2^k进制数
传送门 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进 ...
- 洛谷 P1066 2^k进制数
P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. ( ...
- 【洛谷p1066】2^k进制数
(不会敲键盘惹qwq) 2^k进制数[传送门] 算法标签: (又是一个提高+省选-的题) 如果我说我没听懂你信吗 代码qwq: #include<iostream> #include< ...
- 一本通1649【例 2】2^k 进制数
1649:[例 2]2^k 进制数 时间限制: 1000 ms 内存限制: 524288 KB [题目描述] 原题来自:NOIP 2006 提高组 设 r 是个 2k 进制数,并满足以 ...
- 蓝桥杯 问题 1110: 2^k进制数 (排列组合+高精度巧妙处理)
题目链接 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2 ...
- 洛谷P1066 2^k进制数
P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. ( ...
- [NOIP2006] 提高组 洛谷P1066 2^k进制数
题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻的那一位. (3)将r转换为2进制数q后 ...
- [luogu]P1066 2^k进制数[数学][递推][高精度]
[luogu]P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻 ...
随机推荐
- 为什么要使用Optional
为什么使用Java Optional Why use Optional? NullPointerException 有个很有名的说法: Null Pointer References: The Bil ...
- 最全的ADB命令行大全(转)
基本用法 命令语法 adb 命令的基本语法如下: adb [-d|-e|-s ] 如果只有一个设备/模拟器连接时,可以省略掉 [-d|-e|-s ] 这一部分,直接使用 adb . 为命令指定目标设备 ...
- Android NDK 学习之Application.mk
Application.mk file syntax specification Introduction: This document describes the syntax of Applica ...
- Device doesn't support wireless sync. AMDeviceStartService
Flutter1.9.1+hotfix2 Dart2.5 在iOS13真机上启动不了 错误信息 Device doesn't support wireless sync. AMDeviceStartS ...
- Python面向对象之多态、封装
一.多态 超过一个子类继承父类,出现了多种的形态. 例如,动物种类出现了多种形态,比如猫.狗.猪 class Animal:pass class Cat(Animal):pass class Dog( ...
- Flutter——TabBar组件(顶部Tab切换组件)
TabBar组件的常用属性: 属性 描述 tabs 显示的标签内容,一般使用 Tab 对象,也可以是其他的Widget controller TabController 对象 isScrollabl ...
- Cknife流量分析
本文首发:https://<img src=1 onerror=\u006coc\u0061tion='j\x61v\x61script:\x61lert\x281\x29'>testde ...
- ant不是内部命令
解压路径为举例路径: 解压在E盘 新建变量ANT_HOME 路径为解压目录如E:/apache-ant-1.7.1 Path中添加路径为%ANT_HOME%/bin; 错误提示: 'ant' 不 ...
- P2882 [USACO07MAR]Face The Right Way [贪心+模拟]
题目描述 N头牛排成一列1<=N<=5000.每头牛或者向前或者向后.为了让所有牛都 面向前方,农夫每次可以将K头连续的牛转向1<=K<=N,求操作的最少 次数M和对应的最小K ...
- (一)AppScan的安装及破解
IBM AppScan是一款目前最好用的Web 应用安全测试工具,Rational AppScan 可自动化 Web 应用的安全漏洞评估工作,能扫描和检测所有常见的 Web 应用安全漏洞,例如 SQL ...