1 详细异常

ERROR scheduler.JobScheduler: Error running job streaming job  ms.
org.apache.spark.SparkException: Job aborted due to stage failure: Task in stage 0.0 failed times,
most recent failure: Lost task 0.3 in stage 0.0 (TID , , executor ): ExecutorLostFailure (executor exited caused by one of the running tasks) Reason: Executor heartbeat timed out after ms
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$failJobAndIndependentStages(DAGScheduler.scala:)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$.apply(DAGScheduler.scala:)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$.apply(DAGScheduler.scala:)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$.apply(DAGScheduler.scala:)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$.apply(DAGScheduler.scala:)
at scala.Option.foreach(Option.scala:)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:)
at org.apache.spark.util.EventLoop$$anon$.run(EventLoop.scala:)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:)
at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$.apply(RDD.scala:)
at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$.apply(RDD.scala:)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:)
at org.apache.spark.rdd.RDD.foreachPartition(RDD.scala:)
at com.wm.bigdata.phoenix.etl.WmPhoniexEtlToHbase$$anonfun$main$.apply(WmPhoniexEtlToHbase.scala:)
at com.wm.bigdata.phoenix.etl.WmPhoniexEtlToHbase$$anonfun$main$.apply(WmPhoniexEtlToHbase.scala:)
at org.apache.spark.streaming.dstream.DStream$$anonfun$foreachRDD$$$anonfun$apply$mcV$sp$.apply(DStream.scala:)
at org.apache.spark.streaming.dstream.DStream$$anonfun$foreachRDD$$$anonfun$apply$mcV$sp$.apply(DStream.scala:)
at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$$$anonfun$apply$mcV$sp$.apply$mcV$sp(ForEachDStream.scala:)
at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$$$anonfun$apply$mcV$sp$.apply(ForEachDStream.scala:)
at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$$$anonfun$apply$mcV$sp$.apply(ForEachDStream.scala:)
at org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:)
at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$.apply$mcV$sp(ForEachDStream.scala:)
at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$.apply(ForEachDStream.scala:)
at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$.apply(ForEachDStream.scala:)
at scala.util.Try$.apply(Try.scala:)
at org.apache.spark.streaming.scheduler.Job.run(Job.scala:)
at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$.apply$mcV$sp(JobScheduler.scala:)
at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$.apply(JobScheduler.scala:)
at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$.apply(JobScheduler.scala:)
at scala.util.DynamicVariable.withValue(DynamicVariable.scala:)
at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler.run(JobScheduler.scala:)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:)
at java.lang.Thread.run(Thread.java:)

2 查询Stack Overflow里面问答

 
3 解决
提交spark submit任务的时候,加大超时时间设置
--conf spark.network.timeout  --conf spark.executor.heartbeatInterval=   --conf spark.driver.maxResultSize=4g

【异常】Reason: Executor heartbeat timed out after 140927 ms的更多相关文章

  1. 邮件发送异常, [Errno 110] Connection timed out

    邮件发送异常,  [Errno 110] Connection timed out SMTP 服务地址(华东 1): smtpdm.aliyun.com SMTP 服务地址(新加坡):smtpdm-a ...

  2. (node:7584) UnhandledPromiseRejectionWarning: MongooseTimeoutError: Server selection timed out after 30000 ms

    记录一次学习node.js犯的低级错误 这里遇到一个这样的问题 express连接mongoose时报错(node:7584) UnhandledPromiseRejectionWarning: Mo ...

  3. 处理11gR2 RAC集群资源状态异常INTERMEDIATE,CHECK TIMED OUT

    注意节点6,7的磁盘CRSDG的状态明显不正常.oracle@ZJHZ-PS-CMREAD-SV-RPTDW06-DB-SD:~> crsctl status resource -t |less ...

  4. mybatis-ehcache整合中出现的异常 ibatis处理器异常(executor.ExecutorException)解决方法

    今天学习mabatis时出现了,ibatis处理器处理器异常,显示原因是Executor was closed.则很有可能是ibatis的session被关闭了, 后面看了一下测试程序其实是把sqlS ...

  5. Timed out after 30000 ms while waiting to connect

    今天使用mongo-java-drive写连接mongo的客户端,着实被上面那个错坑了一把.回顾一下解决过程: 报错: com.mongodb.MongoTimeoutException: Timed ...

  6. spark异常篇-Removing executor 5 with no recent heartbeats: 120504 ms exceeds timeout 120000 ms 可能的解决方案

    问题描述与分析 题目中的问题大致可以描述为: 由于某个 Executor 没有按时向 Driver 发送心跳,而被 Driver 判断该 Executor 已挂掉,此时 Driver 要把 该 Exe ...

  7. Spark代码调优(一)

    环境极其恶劣情况下: import org.apache.spark.SparkContext import org.apache.spark.rdd.RDD import org.apache.sp ...

  8. spark 实现TOP N

    数据量较少的情况下: scala> numrdd.sortBy(x=>x,false).take(3) res17: Array[Int] = Array(100, 99, 98) sca ...

  9. IDEA 开发环境中 调试Spark SQL及遇到问题解决办法

    1.问题 java.lang.OutOfMemoryError: PermGen space java.lang.OutOfMemoryError: Java heap space // :: WAR ...

随机推荐

  1. 2.oracle数据库:[1]oracle简易客户端安装方法

      准备oracle简易客户端程序,如果没有请到oracle网站下载www.oracle.com,可以下载基本包及其他扩展程序包,例如:如果要使用sqlplus则需要下载sqlplus包,笔者下载了i ...

  2. 七十九:flask.Restful之flask-Restful标准化返回参数示例

    接上一篇的代码和数据 对于复杂结构的数据如果只是定义单一结构的话返回的数据就没意义了,此时定义的数据结构需精确到所有数据的每一个字段有时候要返回的数据结构中,会有比较复杂的数据结构,证实后可以使用一些 ...

  3. MonkeyRunner基本操作

    1. #导入模块; from com.android.monkeyrunner import MonkeyRunner, MonkeyDevice, MonkeyImage 2. #连接当前设备,并返 ...

  4. golang(11) 反射用法详解

    原文链接:http://www.limerence2017.com/2019/10/14/golang16/ 反射是什么 反射其实就是通过变量动态获取其值和类型的一种技术,有些语言是支持反射的比如py ...

  5. python中的set集合

    当使用爬虫URL保存时,一般会选择set来保存urls,set是集合,集合中的元素不能重复,其次还有交集,并集等集合的功能, 爬虫每次获取的网页中提取网页中的urls,并保存,这就需要利用urls = ...

  6. linux中su和sudo区别

    su切换用户,切换成root用户,要输入root用户的密码 su - 用户名 sudo  涉及到 /etc/sudoers文件 ,内容如下: # User privilege specificatio ...

  7. mybatis学习 (五) POJO的映射文件

    Mapper.xml映射文件中定义了操作数据库的sql,每个sql是一个statement,映射文件是mybatis的核心. 1.parameterType(输入类型) 通过parameterType ...

  8. Tomcat开机自启动,通过服务名重启

    1.将Tomcat注册为服务2.服务开机自启动3.修改Tomcat进程名(待补充)4.通过命令查看日志,不需要进入到日志目录(待补充)5.tomcat进程守护(待补充) 1. 安装tomcat, 此处 ...

  9. zookeeper知识

    zookeeper是一个管理的作用 zookeeper有一个老大叫:leader.跟着老大的有两个小弟follwer,follwer 叫做跟随者 连接zookeeper的六个节点我们称它为客户端 zo ...

  10. python cx_oracle 环境搭建

    背景说明: 之前的环境本来是可以用的,是另外一个项目(python27)需要的时候搭建的.新项目采用的是python36,安装的cx_oracle的版本是7,而环境中的Oracle客户端是11,导致p ...