1 详细异常

ERROR scheduler.JobScheduler: Error running job streaming job  ms.
org.apache.spark.SparkException: Job aborted due to stage failure: Task in stage 0.0 failed times,
most recent failure: Lost task 0.3 in stage 0.0 (TID , , executor ): ExecutorLostFailure (executor exited caused by one of the running tasks) Reason: Executor heartbeat timed out after ms
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$failJobAndIndependentStages(DAGScheduler.scala:)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$.apply(DAGScheduler.scala:)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$.apply(DAGScheduler.scala:)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$.apply(DAGScheduler.scala:)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$.apply(DAGScheduler.scala:)
at scala.Option.foreach(Option.scala:)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:)
at org.apache.spark.util.EventLoop$$anon$.run(EventLoop.scala:)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:)
at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$.apply(RDD.scala:)
at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$.apply(RDD.scala:)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:)
at org.apache.spark.rdd.RDD.foreachPartition(RDD.scala:)
at com.wm.bigdata.phoenix.etl.WmPhoniexEtlToHbase$$anonfun$main$.apply(WmPhoniexEtlToHbase.scala:)
at com.wm.bigdata.phoenix.etl.WmPhoniexEtlToHbase$$anonfun$main$.apply(WmPhoniexEtlToHbase.scala:)
at org.apache.spark.streaming.dstream.DStream$$anonfun$foreachRDD$$$anonfun$apply$mcV$sp$.apply(DStream.scala:)
at org.apache.spark.streaming.dstream.DStream$$anonfun$foreachRDD$$$anonfun$apply$mcV$sp$.apply(DStream.scala:)
at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$$$anonfun$apply$mcV$sp$.apply$mcV$sp(ForEachDStream.scala:)
at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$$$anonfun$apply$mcV$sp$.apply(ForEachDStream.scala:)
at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$$$anonfun$apply$mcV$sp$.apply(ForEachDStream.scala:)
at org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:)
at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$.apply$mcV$sp(ForEachDStream.scala:)
at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$.apply(ForEachDStream.scala:)
at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$.apply(ForEachDStream.scala:)
at scala.util.Try$.apply(Try.scala:)
at org.apache.spark.streaming.scheduler.Job.run(Job.scala:)
at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$.apply$mcV$sp(JobScheduler.scala:)
at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$.apply(JobScheduler.scala:)
at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$.apply(JobScheduler.scala:)
at scala.util.DynamicVariable.withValue(DynamicVariable.scala:)
at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler.run(JobScheduler.scala:)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:)
at java.lang.Thread.run(Thread.java:)

2 查询Stack Overflow里面问答

 
3 解决
提交spark submit任务的时候,加大超时时间设置
--conf spark.network.timeout  --conf spark.executor.heartbeatInterval=   --conf spark.driver.maxResultSize=4g

【异常】Reason: Executor heartbeat timed out after 140927 ms的更多相关文章

  1. 邮件发送异常, [Errno 110] Connection timed out

    邮件发送异常,  [Errno 110] Connection timed out SMTP 服务地址(华东 1): smtpdm.aliyun.com SMTP 服务地址(新加坡):smtpdm-a ...

  2. (node:7584) UnhandledPromiseRejectionWarning: MongooseTimeoutError: Server selection timed out after 30000 ms

    记录一次学习node.js犯的低级错误 这里遇到一个这样的问题 express连接mongoose时报错(node:7584) UnhandledPromiseRejectionWarning: Mo ...

  3. 处理11gR2 RAC集群资源状态异常INTERMEDIATE,CHECK TIMED OUT

    注意节点6,7的磁盘CRSDG的状态明显不正常.oracle@ZJHZ-PS-CMREAD-SV-RPTDW06-DB-SD:~> crsctl status resource -t |less ...

  4. mybatis-ehcache整合中出现的异常 ibatis处理器异常(executor.ExecutorException)解决方法

    今天学习mabatis时出现了,ibatis处理器处理器异常,显示原因是Executor was closed.则很有可能是ibatis的session被关闭了, 后面看了一下测试程序其实是把sqlS ...

  5. Timed out after 30000 ms while waiting to connect

    今天使用mongo-java-drive写连接mongo的客户端,着实被上面那个错坑了一把.回顾一下解决过程: 报错: com.mongodb.MongoTimeoutException: Timed ...

  6. spark异常篇-Removing executor 5 with no recent heartbeats: 120504 ms exceeds timeout 120000 ms 可能的解决方案

    问题描述与分析 题目中的问题大致可以描述为: 由于某个 Executor 没有按时向 Driver 发送心跳,而被 Driver 判断该 Executor 已挂掉,此时 Driver 要把 该 Exe ...

  7. Spark代码调优(一)

    环境极其恶劣情况下: import org.apache.spark.SparkContext import org.apache.spark.rdd.RDD import org.apache.sp ...

  8. spark 实现TOP N

    数据量较少的情况下: scala> numrdd.sortBy(x=>x,false).take(3) res17: Array[Int] = Array(100, 99, 98) sca ...

  9. IDEA 开发环境中 调试Spark SQL及遇到问题解决办法

    1.问题 java.lang.OutOfMemoryError: PermGen space java.lang.OutOfMemoryError: Java heap space // :: WAR ...

随机推荐

  1. linux系统交互通道

    默认有6个命令交互通道和一个图形界面交互通道,默认进入到的是图形界面通道     命令交互模式切换:ctrl+alt+f1---f6     图形交互界面 ctrl+alt+f7 1.图形界面交互模式 ...

  2. AutoResetEvent和ManualResetEvent(多线程操作)

    摘自风中灵药的博客:https://www.cnblogs.com/qingyun163/archive/2013/01/05/2846633.html#!comments AutoResetEven ...

  3. python programming GUI综合实战(在GUI上画图)

    import os import platform import sys from PyQt5.QtCore import * from PyQt5.QtGui import * from PyQt5 ...

  4. 一个好的关于计算文件大小,及使其便于阅读的方法(php)

    public function getReadableFileSize($retstring=null){ $sizes = array('byte','kB','MB','GB','TB','PB' ...

  5. Pytorch-创建tensor

    引言 本篇介绍创建tensor的几种方式 Import from numpy from_numpy() float64 是 double 类型,也就是说从numpy导入的float其实是double类 ...

  6. 使用shell脚本常见的一些问题

    Jdk版本:jdk-8u102-linux-x64 Tomcat版本:apache-tomcat-7.0.92 Redis版本:redis-5.0.0 由于公司项目的需要,要在多台服务器上面部署一些应 ...

  7. 小程序入门 MQTT物联网协议 publish 和订阅subscribe onenet 阿里云 百度云 基于GPRS模块(SIM800C/SIM900A/SIM868等)和STM32主控芯片

    本文基本公开了如何移植MQTT物联网协议到STM32平台上,并结合GPRS模块(SIM800C/SIM900A/SIM868等)实现publish和订阅topic从onenet,阿里云,百度云等.如果 ...

  8. pt-online-schema-change 修改表结构

  9. BeanFactory 和FactoryBean的区别

    转自:https://www.cnblogs.com/aspirant/p/9082858.html BeanFacotry是spring中比较原始的Factory.如XMLBeanFactory就是 ...

  10. 关于Typescript - HTMLElement上使用append / prepend函数的问题

    因最近在做浏览器打印界面水印的问题,用到后台动态创建标签,样式的处理用到了append,prend函数,Angular build打包的时候却抛出了异常↓ ERROR in src/app/route ...