【异常】Reason: Executor heartbeat timed out after 140927 ms
1 详细异常
ERROR scheduler.JobScheduler: Error running job streaming job ms.
org.apache.spark.SparkException: Job aborted due to stage failure: Task in stage 0.0 failed times,
most recent failure: Lost task 0.3 in stage 0.0 (TID , , executor ): ExecutorLostFailure (executor exited caused by one of the running tasks) Reason: Executor heartbeat timed out after ms
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$failJobAndIndependentStages(DAGScheduler.scala:)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$.apply(DAGScheduler.scala:)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$.apply(DAGScheduler.scala:)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$.apply(DAGScheduler.scala:)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$.apply(DAGScheduler.scala:)
at scala.Option.foreach(Option.scala:)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:)
at org.apache.spark.util.EventLoop$$anon$.run(EventLoop.scala:)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:)
at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$.apply(RDD.scala:)
at org.apache.spark.rdd.RDD$$anonfun$foreachPartition$.apply(RDD.scala:)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:)
at org.apache.spark.rdd.RDD.foreachPartition(RDD.scala:)
at com.wm.bigdata.phoenix.etl.WmPhoniexEtlToHbase$$anonfun$main$.apply(WmPhoniexEtlToHbase.scala:)
at com.wm.bigdata.phoenix.etl.WmPhoniexEtlToHbase$$anonfun$main$.apply(WmPhoniexEtlToHbase.scala:)
at org.apache.spark.streaming.dstream.DStream$$anonfun$foreachRDD$$$anonfun$apply$mcV$sp$.apply(DStream.scala:)
at org.apache.spark.streaming.dstream.DStream$$anonfun$foreachRDD$$$anonfun$apply$mcV$sp$.apply(DStream.scala:)
at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$$$anonfun$apply$mcV$sp$.apply$mcV$sp(ForEachDStream.scala:)
at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$$$anonfun$apply$mcV$sp$.apply(ForEachDStream.scala:)
at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$$$anonfun$apply$mcV$sp$.apply(ForEachDStream.scala:)
at org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:)
at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$.apply$mcV$sp(ForEachDStream.scala:)
at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$.apply(ForEachDStream.scala:)
at org.apache.spark.streaming.dstream.ForEachDStream$$anonfun$.apply(ForEachDStream.scala:)
at scala.util.Try$.apply(Try.scala:)
at org.apache.spark.streaming.scheduler.Job.run(Job.scala:)
at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$.apply$mcV$sp(JobScheduler.scala:)
at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$.apply(JobScheduler.scala:)
at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler$$anonfun$run$.apply(JobScheduler.scala:)
at scala.util.DynamicVariable.withValue(DynamicVariable.scala:)
at org.apache.spark.streaming.scheduler.JobScheduler$JobHandler.run(JobScheduler.scala:)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:)
at java.lang.Thread.run(Thread.java:)
2 查询Stack Overflow里面问答
--conf spark.network.timeout --conf spark.executor.heartbeatInterval= --conf spark.driver.maxResultSize=4g
【异常】Reason: Executor heartbeat timed out after 140927 ms的更多相关文章
- 邮件发送异常, [Errno 110] Connection timed out
邮件发送异常, [Errno 110] Connection timed out SMTP 服务地址(华东 1): smtpdm.aliyun.com SMTP 服务地址(新加坡):smtpdm-a ...
- (node:7584) UnhandledPromiseRejectionWarning: MongooseTimeoutError: Server selection timed out after 30000 ms
记录一次学习node.js犯的低级错误 这里遇到一个这样的问题 express连接mongoose时报错(node:7584) UnhandledPromiseRejectionWarning: Mo ...
- 处理11gR2 RAC集群资源状态异常INTERMEDIATE,CHECK TIMED OUT
注意节点6,7的磁盘CRSDG的状态明显不正常.oracle@ZJHZ-PS-CMREAD-SV-RPTDW06-DB-SD:~> crsctl status resource -t |less ...
- mybatis-ehcache整合中出现的异常 ibatis处理器异常(executor.ExecutorException)解决方法
今天学习mabatis时出现了,ibatis处理器处理器异常,显示原因是Executor was closed.则很有可能是ibatis的session被关闭了, 后面看了一下测试程序其实是把sqlS ...
- Timed out after 30000 ms while waiting to connect
今天使用mongo-java-drive写连接mongo的客户端,着实被上面那个错坑了一把.回顾一下解决过程: 报错: com.mongodb.MongoTimeoutException: Timed ...
- spark异常篇-Removing executor 5 with no recent heartbeats: 120504 ms exceeds timeout 120000 ms 可能的解决方案
问题描述与分析 题目中的问题大致可以描述为: 由于某个 Executor 没有按时向 Driver 发送心跳,而被 Driver 判断该 Executor 已挂掉,此时 Driver 要把 该 Exe ...
- Spark代码调优(一)
环境极其恶劣情况下: import org.apache.spark.SparkContext import org.apache.spark.rdd.RDD import org.apache.sp ...
- spark 实现TOP N
数据量较少的情况下: scala> numrdd.sortBy(x=>x,false).take(3) res17: Array[Int] = Array(100, 99, 98) sca ...
- IDEA 开发环境中 调试Spark SQL及遇到问题解决办法
1.问题 java.lang.OutOfMemoryError: PermGen space java.lang.OutOfMemoryError: Java heap space // :: WAR ...
随机推荐
- linux系统交互通道
默认有6个命令交互通道和一个图形界面交互通道,默认进入到的是图形界面通道 命令交互模式切换:ctrl+alt+f1---f6 图形交互界面 ctrl+alt+f7 1.图形界面交互模式 ...
- AutoResetEvent和ManualResetEvent(多线程操作)
摘自风中灵药的博客:https://www.cnblogs.com/qingyun163/archive/2013/01/05/2846633.html#!comments AutoResetEven ...
- python programming GUI综合实战(在GUI上画图)
import os import platform import sys from PyQt5.QtCore import * from PyQt5.QtGui import * from PyQt5 ...
- 一个好的关于计算文件大小,及使其便于阅读的方法(php)
public function getReadableFileSize($retstring=null){ $sizes = array('byte','kB','MB','GB','TB','PB' ...
- Pytorch-创建tensor
引言 本篇介绍创建tensor的几种方式 Import from numpy from_numpy() float64 是 double 类型,也就是说从numpy导入的float其实是double类 ...
- 使用shell脚本常见的一些问题
Jdk版本:jdk-8u102-linux-x64 Tomcat版本:apache-tomcat-7.0.92 Redis版本:redis-5.0.0 由于公司项目的需要,要在多台服务器上面部署一些应 ...
- 小程序入门 MQTT物联网协议 publish 和订阅subscribe onenet 阿里云 百度云 基于GPRS模块(SIM800C/SIM900A/SIM868等)和STM32主控芯片
本文基本公开了如何移植MQTT物联网协议到STM32平台上,并结合GPRS模块(SIM800C/SIM900A/SIM868等)实现publish和订阅topic从onenet,阿里云,百度云等.如果 ...
- pt-online-schema-change 修改表结构
- BeanFactory 和FactoryBean的区别
转自:https://www.cnblogs.com/aspirant/p/9082858.html BeanFacotry是spring中比较原始的Factory.如XMLBeanFactory就是 ...
- 关于Typescript - HTMLElement上使用append / prepend函数的问题
因最近在做浏览器打印界面水印的问题,用到后台动态创建标签,样式的处理用到了append,prend函数,Angular build打包的时候却抛出了异常↓ ERROR in src/app/route ...