python数据分析与应用笔记

使用sklearn构建模型

1.使用sklearn转换器处理数据

import numpy as np
from sklearn.datasets import load_breast_cancer
from sklearn.preprocessing import MinMaxScaler #该函数时对数据做标准化处理
from sklearn.decomposition import PCA #该函数时对数据进行降维处理
from sklearn.model_selection import train_test_split #该函数是对数据做训练集和测试集的划分
cancer = load_breast_cancer() #将数据集赋值给cancer变量
cancer_data = cancer['data'] #提取数据集中的数据
cancer_target = cancer['target'] #提取数据集中的标签
cancer_names = cancer['feature_names'] #查看特征数目
cancer_desc = cancer['DESCR'] #划分训练集和测试集,其中20%的作为测试集
cancer_train_data,cancer_test_data,cancer_train_target,cancer_test_target = train_test_split(cancer_data,cancer_target,test_size = 0.2,random_state = 42)
scaler = MinMaxScaler().fit(cancer_train_data) #生成规则
# 将规则应用于训练集和测试集
cancer_trainScaler = scaler.transform(cancer_train_data)
cancer_testScaler = scaler.transform(cancer_test_data)
#构建pca降维模型
pca_model = PCA(n_components = 10).fit(cancer_trainScaler)
#将降维模型应用于标准化之后的训练数据和测试数据
cancer_trainPca = pca_model.transform(cancer_trainScaler)
cancer_testPca = pca_model.transform(cancer_testScaler) print('降维前训练数据的形状:',cancer_trainScaler.shape)
print('降维后训练数据的形状:',cancer_trainPca.shape)
print('降维前测试数据的形状:',cancer_testScaler.shape)
print('降维后测试数据的形状:',cancer_testPca.shape)
降维前训练数据的形状: (455, 30)
降维后训练数据的形状: (455, 10)
降维前测试数据的形状: (114, 30)
降维后测试数据的形状: (114, 10)
  • 任务:使用sklearn实现数据处理和降维操作
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
boston = load_boston()
boston_data = boston['data']
boston_target = boston['target']
boston_names = boston['feature_names']
boston_train_data,boston_test_data,boston_train_target,boston_test_target = train_test_split(boston_data,boston_target,test_size = 0.2,random_state = 42)
stdScale = StandardScaler().fit(boston_train_data)
boston_trainScaler = stdScale.transform(boston_train_data)
boston_testScaler = stdScale.transform(boston_test_data) pca_model = PCA(n_components = 5).fit(boston_trainScaler)
boston_trainPca = pca_model.transform(boston_trainScaler)
boston_testPca = pca_model.transform(boston_testScaler)

2.构建并评价聚类模型

常用的聚类算法如表所示:



sklearn常用的聚类算法模块cluster提供的聚类算法及其适用范围如图:

import pandas as pd
from sklearn.manifold import TSNE #TSNE函数可实现多维数据的可视化展现
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.preprocessing import MinMaxScaler
from sklearn.cluster import KMeans
iris = load_iris()
iris_data = iris['data']
iris_target = iris['target']
iris_names = iris['feature_names']
scale = MinMaxScaler().fit(iris_data) #构建规则
iris_dataScale = scale.transform(iris_data) #将规则应用于数据
kmeans = KMeans(n_clusters = 3,random_state = 123).fit(iris_dataScale) #构建并训练聚类模型
result = kmeans.predict([[1.5,1.5,1.5,1.5]]) #用模型进行预测 tsne = TSNE(n_components = 2,init = 'random',random_state=177).fit(iris_data) #使用TSNE对数据进行降维,降成两维
df = pd.DataFrame(tsne.embedding_) #将原始数据转化为DataFrame
df['labels']=kmeans.labels_ #将聚类结果存储进df数据集 df1 = df[df['labels']==0]
df2 = df[df['labels']==1]
df3 = df[df['labels']==2] fig = plt.figure(figsize=(9,6))
plt.plot(df1[0],df1[1],'bo',df2[0],df2[1],'r*',df3[0],df3[1],'gD')
#plt.axis([-60,60,-80,80])
plt.savefig('聚类结果.png')
plt.show()
# print(df)
# print(df1)
# print(kmeans.labels_)
print(iris_names)

['sepal length (cm)', 'sepal width (cm)', 'petal length (cm)', 'petal width (cm)']

评价聚类模型

  • 标准是:组内相似性越大,组间差别越大,其聚类效果越好

    sklearn 的metrics模块提供的聚类模型评价指标有:



使用FMI评级法去评价K-Means聚类模型

from sklearn.metrics import fowlkes_mallows_score
for i in range(2,7):
kmeans = KMeans(n_clusters = i,random_state = 123).fit(iris_data)
score = fowlkes_mallows_score(iris_target,kmeans.labels_)
print('iris数据聚%d类FMI评价分值为:%f'%(i,score))
iris数据聚2类FMI评价分值为:0.750473
iris数据聚3类FMI评价分值为:0.820808
iris数据聚4类FMI评价分值为:0.753970
iris数据聚5类FMI评价分值为:0.725483
iris数据聚6类FMI评价分值为:0.600691

使用轮廓系数评价法

from sklearn.metrics import silhouette_score
import matplotlib.pyplot as plt
silhouettteScore = []
for i in range(2,15):
kmeans = KMeans(n_clusters = i,random_state = 123).fit(iris_data)
score = silhouette_score(iris_data,kmeans.labels_)
silhouettteScore.append(score)
plt.figure(figsize=(10,6))
plt.plot(range(2,15),silhouettteScore,linewidth = 1.5,linestyle = '-')
plt.show()

使用Calinski-Harabasz指数评价K-Means聚类模型

from sklearn.metrics import calinski_harabaz_score
for i in range(2,7):
kmeans = KMeans(n_clusters = i,random_state = 123).fit(iris_data)
score = calinski_harabaz_score(iris_data,kmeans.labels_)
print('iris数据聚%d类calinski_harabaz指数为:%f'%(i,score))
iris数据聚2类calinski_harabaz指数为:513.303843
iris数据聚3类calinski_harabaz指数为:560.399924
iris数据聚4类calinski_harabaz指数为:529.120719
iris数据聚5类calinski_harabaz指数为:494.094382
iris数据聚6类calinski_harabaz指数为:474.753604

python数据分析与应用的更多相关文章

  1. [Python数据分析]新股破板买入,赚钱几率如何?

    这是本人一直比较好奇的问题,网上没搜到,最近在看python数据分析,正好自己动手做一下试试.作者对于python是零基础,需要从头学起. 在写本文时,作者也没有完成这个小分析目标,边学边做吧. == ...

  2. 【Python数据分析】Python3多线程并发网络爬虫-以豆瓣图书Top250为例

    基于上两篇文章的工作 [Python数据分析]Python3操作Excel-以豆瓣图书Top250为例 [Python数据分析]Python3操作Excel(二) 一些问题的解决与优化 已经正确地实现 ...

  3. 【Python数据分析】Python3操作Excel(二) 一些问题的解决与优化

    继上一篇[Python数据分析]Python3操作Excel-以豆瓣图书Top250为例 对豆瓣图书Top250进行爬取以后,鉴于还有一些问题没有解决,所以进行了进一步的交流讨论,这期间得到了一只尼玛 ...

  4. 【搬砖】【Python数据分析】Pycharm中plot绘图不能显示出来

    最近在看<Python数据分析>这本书,而自己写代码一直用的是Pycharm,在练习的时候就碰到了plot()绘图不能显示出来的问题.网上翻了一下找到知乎上一篇回答,试了一下好像不行,而且 ...

  5. Python 数据分析(二 本实验将学习利用 Python 数据聚合与分组运算,时间序列,金融与经济数据应用等相关知识

    Python 数据分析(二) 本实验将学习利用 Python 数据聚合与分组运算,时间序列,金融与经济数据应用等相关知识 第1节 groupby 技术 第2节 数据聚合 第3节 分组级运算和转换 第4 ...

  6. Python数据分析(二): Numpy技巧 (1/4)

    In [1]: import numpy numpy.__version__ Out[1]: '1.13.1' In [2]: import numpy as np  

  7. Python数据分析(二): Numpy技巧 (2/4)

    numpy.pandas.matplotlib(+seaborn)是python数据分析/机器学习的基本工具. numpy的内容特别丰富,我这里只能介绍一下比较常见的方法和属性.   昨天晚上发了第一 ...

  8. Python数据分析(二): Numpy技巧 (3/4)

    numpy.pandas.matplotlib(+seaborn)是python数据分析/机器学习的基本工具. numpy的内容特别丰富,我这里只能介绍一下比较常见的方法和属性.   昨天晚上发了第一 ...

  9. Python数据分析(二): Numpy技巧 (4/4)

    numpy.pandas.matplotlib(+seaborn)是python数据分析/机器学习的基本工具. numpy的内容特别丰富,我这里只能介绍一下比较常见的方法和属性.   第一部分: ht ...

  10. 【读书笔记与思考】《python数据分析与挖掘实战》-张良均

    [读书笔记与思考]<python数据分析与挖掘实战>-张良均 最近看一些机器学习相关书籍,主要是为了拓宽视野.在阅读这本书前最吸引我的地方是实战篇,我通读全书后给我印象最深的还是实战篇.基 ...

随机推荐

  1. kong命令(三)route

    介绍 route 是一套匹配客户端请求的规则.每个route都会匹配一个service,每个service可定关联多个route. 可以说service:route=1:n.一对多的关系.每个匹配到r ...

  2. stm32 待机模式

    低功耗模式 降低系统时钟速度 不使用APBx和AHB外设时,将对应的外设时钟关闭 睡眠模式(Cortex™-M3内核停止,所有外设包括Cortex-M3核心的外设,如NVIC.系统时钟(SysTick ...

  3. echart 不同颜色(柱状图)

    var option = { tooltip: { trigger: 'axis' }, grid: { left: '3%', right: '4%', bottom: '3%', containL ...

  4. Mycat详解及配置读写分离(Centos7)

    目录 一.理论概述 二.环境 三.部署 一.理论概述 原理简述 参考文档 MyCAT主要是通过对SQL的拦截,然后经过一定规则的分片解析.路由分析.读写分离分析.缓存分析等,然后将SQL发给后端真实的 ...

  5. zookeeper:3

    zoo.cfg配置文件 tickTime=2000  :zookeeper中最小的时间单位长度 (ms). initLimit=10  :follower节点启动后与leader节点完成数据同步的时间 ...

  6. CSS浮动特性

    float:left/right左浮动有浮动 特点: ①浮动不占位:浮动元素不占位置 ②默认排列成一行,遇到边界自动换行 ③如果有文字(没有设置浮动的元素内容)会绕着浮动元素走 <!DOCTYP ...

  7. ping加上时间信息

    一.linux系统ping加时间戳信息 1.ping 加时间信息,然后还要实时保存到一个文件中,那么就与awk结合 ping 115.239.211.112 -c 10 | awk '{ print ...

  8. SpringBoot LoggerFactory is not a Logback LoggerContext but Logback is on the classpath

    SpringBoot 在启动项目的时候一起错误: SLF4J: Class path contains multiple SLF4J bindings.SLF4J: Found binding in ...

  9. 8种主流NoSQL数据库对比

    摘要:虽然SQL数据库是非常有用的工具,但经历了15年的一支独秀之后垄断即将被打破.这只是时间问题:被迫使用关系数据库,但最终发现不能适应需求的情况不胜枚举. 简介 NoSQL,是一项全新的数据库革命 ...

  10. 关于Python中正则使用findall和分组的一个坑

    版权声明:本文为sam的原创文章,转载请添加出处:http://blog.csdn.net/samed https://blog.csdn.net/samed/article/details/5055 ...