folly/Conv.h

folly/Conv.h is a one-stop-shop for converting values across types. Its main features are simplicity of the API (only the names to and toAppend must be memorized), speed (folly is significantly faster, sometimes by an order of magnitude, than comparable APIs), and correctness.

Synopsis


All examples below are assume to have included folly/Conv.h and issued using namespace folly; You will need:

    // To format as text and append to a string, use toAppend.
fbstring str;
toAppend(2.5, &str);
CHECK_EQ(str, "2.5"); // Multiple arguments are okay, too. Just put the pointer to string at the end.
toAppend(" is ", , " point ", , &str);
CHECK_EQ(str, "2.5 is 2 point 5"); // You don't need to use fbstring (although it's much faster for conversions and in general).
std::string stdStr;
toAppend("Pi is about ", 22.0 / , &stdStr);
// In general, just use to<TargetType>(sourceValue). It returns its result by value.
stdStr = to<std::string>("Variadic ", "arguments also accepted."); // to<fbstring> is 2.5x faster than to<std::string> for typical workloads.
str = to<fbstring>("Variadic ", "arguments also accepted.");

Integral-to-integral conversion


Using to<Target>(value) to convert one integral type to another will behave as follows:

  • If the target type can accommodate all possible values of the source value, the value is implicitly converted. No further action is taken. Example:
        short x;
unsigned short y;
...
auto a = to<int>(x); // zero overhead conversion
auto b = to<int>(y); // zero overhead conversion
  • Otherwise, to inserts bounds checks and throws std::range_error if the target type cannot accommodate the source value. Example:
    short x;
unsigned short y;
long z;
...
x = ;
auto a = to<unsigned short>(x); // fine
x = -;
a = to<unsigned short>(x); // THROWS
z = ;
auto b = to<int>(z); // fine
z += ;
b = to<int>(z); // THROWS
auto b = to<unsigned int>(z); // fine

Anything-to-string conversion


As mentioned, there are two primitives for converting anything to string: to and toAppend. They support the same set of source types, literally by definition (to is implemented in terms of toAppend for all types). The call toAppend(value, &str)formats and appends value to str whereas to<StringType>(value) formats value as a StringType and returns the result by value. Currently, the supported StringTypes are std::string and fbstring

Both toAppend and to with a string type as a target support variadic arguments. Each argument is converted in turn. FortoAppend the last argument in a variadic list must be the address of a supported string type (no need to specify the string type as a template argument).

Integral-to-string conversion

Nothing special here - integrals are converted to strings in decimal format, with a '-' prefix for negative values. Example:

    auto a = to<fbstring>();
assert(a == "");
a = to<fbstring>(-);
assert(a == "-456");

The conversion implementation is aggressively optimized. It converts two digits at a time assisted by fixed-size tables. Converting a long to an fbstring is 3.6x faster than using boost::lexical_cast and 2.5x faster than using sprintf even though the latter is used in conjunction with a stack-allocated constant-size buffer.

Note that converting integral types to fbstring has a particular advantage compared to converting to std::string No integral type (<= 64 bits) has more than 20 decimal digits including sign. Since fbstring employs the small string optimization for up to 23 characters, converting an integral to fbstring is guaranteed to not allocate memory, resulting in significant speed and memory locality gains. Benchmarks reveal a 2x gain on a typical workload.

char to string conversion

Although char is technically an integral type, most of the time you want the string representation of 'a' to be "a", not 96 That's why folly/Conv.h handles char as a special case that does the expected thing. Note that signed char and unsigned char are still considered integral types.

Floating point to string conversion

folly/Conv.h uses V8's double conversion routines. They are accurate and fast; on typical workloads, to<fbstring>(doubleValue) is 1.9x faster than sprintf and 5.5x faster than boost::lexical_cast (It is also 1.3x faster than to<std::string>(doubleValue)

const char* to string conversion

For completeness, folly/Conv.h supports const char* including i.e. string literals. The "conversion" consists, of course, of the string itself. Example:

    auto s = to<fbstring>("Hello, world");
assert(s == "Hello, world");

Anything from string conversion (i.e. parsing)


folly/Conv.h includes three kinds of parsing routines:

  • to<Type>(const char* begin, const char* end) rigidly converts the range [begin, end) to Type These routines have drastic restrictions (e.g. allow no leading or trailing whitespace) and are intended as an efficient back-end for more tolerant routines.
  • to<Type>(stringy) converts stringy to Type Value stringy may be of type const char*StringPiece,std::string, or fbstring (Technically, the requirement is that stringy implicitly converts to a StringPiece
  • to<Type>(&stringPiece) parses with progress information: given stringPiece of type StringPiece it parses as much as possible from it as type Type and alters stringPiece to remove the munched characters. This is easiest clarified by an example:
    fbstring s = " 1234 angels on a pin";
StringPiece pc(s);
auto x = to<int>(&pc);
assert(x == );
assert(pc == " angels on a pin";

Note how the routine ate the leading space but not the trailing one.

Parsing integral types

Parsing integral types is unremarkable - decimal format is expected, optional '+' or '-' sign for signed types, but no optional '+' is allowed for unsigned types. The one remarkable element is speed - parsing typical long values is 6x faster than sscanffolly/Conv.h uses aggressive loop unrolling and table-assisted SIMD-style code arrangement that avoids integral division (slow) and data dependencies across operations (ILP-unfriendly). Example:

    fbstring str = "  12345  ";
assert(to<int>(str) == );
str = " 12345six seven eight";
StringPiece pc(str);
assert(to<int>(&pc) == );
assert(str == "six seven eight");

Parsing floating-point types

folly/Conv.h uses, again, V8's double-conversion routines as back-end. The speed is 3x faster than sscanf and 1.7x faster than in-home routines such as parse<double> But the more important detail is accuracy - even if you do code a routine that works faster than to<double> chances are it is incorrect and will fail in a variety of corner cases. Using to<double> is strongly recommended.

Note that if the string "NaN" (with any capitalization) is passed to to<double> then NaN is returned, which can be tested for as follows:

    fbstring str = "nan"; // "NaN", "NAN", etc.
double d = to<double>(str);
if (std::isnan(d)) {
// string was a valid representation of the double value NaN
}

Note that passing "-NaN" (with any capitalization) to to<double> also returns NaN.

Note that if the strings "inf" or "infinity" (with any capitalization) are passed to to<double> then infinity is returned, which can be tested for as follows:

    fbstring str = "inf"; // "Inf", "INF", "infinity", "Infinity", etc.
double d = to<double>(str);
if (std::isinf(d)) {
// string was a valid representation of one of the double values +Infinity
// or -Infinity
}

Note that passing "-inf" or "-infinity" (with any capitalization) to to<double> returns -infinity rather than +infinity. The sign of the infinity can be tested for as follows:

    fbstring str = "-inf"; // or "inf", "-Infinity", "+Infinity", etc.
double d = to<double>(str);
if (d == std::numeric_limits<double>::infinity()) {
// string was a valid representation of the double value +Infinity
} else if (d == -std::numeric_limits<double>::infinity()) {
// string was a valid representation of the double value -Infinity
}

Note that if an unparseable string is passed to to<double> then an exception is thrown, rather than NaN being returned. This can be tested for as follows:

    fbstring str = "not-a-double"; // Or "1.1.1", "", "$500.00", etc.
double d;
try {
d = to<double>(str);
} catch (const std::range_error &) {
// string could not be parsed
}

Note that the empty string ("") is an unparseable value, and will cause to<double> to throw an exception.

Non-throwing interfaces

tryTo<T> is the non-throwing variant of to<T>. It returns an Expected<T, ConversionCode>. You can think of Expected as like an Optional<T>, but if the conversion failed, Expected stores an error code instead of a T.

tryTo<T> has similar performance as to<T> when the conversion is successful. On the error path, you can expect tryTo<T>to be roughly three orders of magnitude faster than the throwing to<T> and to completely avoid any lock contention arising from stack unwinding.

Here is how to use non-throwing conversions:

    auto t1 = tryTo<int>(str);
if (t1.hasValue()) {
use(t1.value());
}

Expected has a composability feature to make the above pattern simpler.

    tryTo<int>(str).then([](int i) { use(i); });

Conv的更多相关文章

  1. matlab中的卷积——filter,conv之间的区别

    %Matlab提供了计算线性卷积和两个多项式相乘的函数conv,语法格式w=conv(u,v),其中u和v分别是有限长度序列向量,w是u和v的卷积结果序列向量. %如果向量u和v的长度分别为N和M,则 ...

  2. mysql的conv的用法

    这次的ctf比赛用到这个函数,这里记录一下 题目禁了ascii , ord 那就使用conv 这个函数是用来将字符转换进制的,例如将a转成ASCII码(换个说法就是将16进制的a换成10进制) 那就直 ...

  3. (原)caffe中的conv

    转载请注明出处: https://www.cnblogs.com/darkknightzh/p/10486686.html conv总体调用流程如下图所示: 说明:带o的为输出,如Wo代表输出宽度:带 ...

  4. 深度学习卷积网络中反卷积/转置卷积的理解 transposed conv/deconv

    搞明白了卷积网络中所谓deconv到底是个什么东西后,不写下来怕又忘记,根据参考资料,加上我自己的理解,记录在这篇博客里. 先来规范表达 为了方便理解,本文出现的举例情况都是2D矩阵卷积,卷积输入和核 ...

  5. [转载] Conv Nets: A Modular Perspective

    原文地址:http://colah.github.io/posts/2014-07-Conv-Nets-Modular/ Conv Nets: A Modular Perspective Posted ...

  6. MATLAB卷积运算(conv、conv2、convn)解释

    1 conv(向量卷积运算) 所谓两个向量卷积,说白了就是多项式乘法.比如:p=[1 2 3],q=[1 1]是两个向量,p和q的卷积如下:把p的元素作为一个多项式的系数,多项式按升幂(或降幂)排列, ...

  7. boost-字符编码转换:使用conv

    Windows下的字符集转换可以使用WideCharToMultiByte/ MultiByteToWideChar,Linux下字符集转换可以使用iconv()函数,下面为使用boost的conv来 ...

  8. tensorflow 之常见模块conv,bn...实现

    使用tensorflow时,会发现tf.nn,tf.layers, tf.contrib模块有很多功能是重复的,尤其是卷积操作,在使用的时候,我们可以根据需要现在不同的模块.但有些时候可以一起混用. ...

  9. MySQL中特有的函数CONV函数

    CONV函数:用于对数字进行转换,比如将十进制的数字转化成二进制,参数格式convert(N,frombse,tobase) 将数字N从frombase进制转化成tobase进制,并且以字符串的格式返 ...

随机推荐

  1. hdu 3792 Twin Prime Conjecture 前缀和+欧拉打表

    Twin Prime Conjecture Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  2. python 解压zip压缩包

    在当前路径解压zip压缩包,生成同名文件夹,内部目录结构与压缩包一致 import zipfile import os def un_zip(file_name): """ ...

  3. vim 安装Vundle.vim

    1.下载 git clone https://github.com/VundleVim/Vundle.vim.git ~/.vim/bundle/Vundle.vim 2.配置vimrc set no ...

  4. Java回顾之一些基础概念

    类的初始化顺序 在Java中,类里面可能包含:静态变量,静态初始化块,成员变量,初始化块,构造函数.在类之间可能存在着继承关系,那么当我们实例化一个对象时,上述各部分的加载顺序是怎样的? 首先来看代码 ...

  5. 【Docker】数据库动态授权组件在Kubernetes集群下的测试过程记录

    背景 我们都知道出于安全性考虑,生产环境的权限一般都是要做最小化控制,尤其是数据库的操作授权,更是重中之重. 博主所在公司使用的是Kubernetes(k8s)进行的集群容器管理,因为容器发布时的IP ...

  6. 【Python】实现对大文件的增量读取

    背景 前段时间在做一个算法测试,需要对源于日志的数据进行分析才能获取到结果:日志文件较大,所以想要获取数据的变化曲线,增量读取是最好的方式. 网上有很多人的技术博客都是写的用for循环readline ...

  7. Rails 5 Test Prescriptions 第9章 Testing-JavaScript: Integration Testing,❌挂一个问题webpacker::helper

    使用Capybara进行JS的集成测试 谈论驱动 让测试通过 Webpack in Development Mode Js设计 是用户在网页上有好的体验的重要因素. 尽管如此,许多网页不测试JS. 部 ...

  8. vscode的keybindings.json 和 AHK 脚本映射Win键

    vscodehotkey.ahk https://github.com/m2nlight/AHKVSCodeLikeMac ; Shortcuts like mac ; Written by Bob ...

  9. 两个值相等的Integer的==比较问题

    @Test    public void testIntegerEqual() {        /** -128~127 之外的数**/        Integer tem = 129;      ...

  10. HashMap1.8源码分析(红黑树)

    转载:https://segmentfault.com/a/1190000012926722?utm_source=tag-newest https://blog.csdn.net/weixin_40 ...