Hive文件的存储格式
hive文件存储格式包括以下几类:
TEXTFILE
SEQUENCEFILE
RCFILE
自定义格式
其中TEXTFILE为默认格式,建表时不指定默认为这个格式,导入数据时会直接把数据文件拷贝到hdfs上不进行处理。
SequenceFile,RCFile格式的表不能直接从本地文件导入数据,数据要先导入到textfile格式的表中,然后再从textfile表中用insert导入到SequenceFile,RCFile表中。
TEXTFIEL
默认格式,数据不做压缩,磁盘开销大,数据解析开销大。
可结合Gzip、Bzip2使用(系统自动检查,执行查询时自动解压),但使用这种方式,hive不会对数据进行切分,从而无法对数据进行并行操作。
实例:

> create table test1(str STRING)
> STORED AS TEXTFILE;
OK
Time taken: 0.786 seconds
#写脚本生成一个随机字符串文件,导入文件:
> LOAD DATA LOCAL INPATH '/home/work/data/test.txt' INTO TABLE test1;
Copying data from file:/home/work/data/test.txt
Copying file: file:/home/work/data/test.txt
Loading data to table default.test1
OK
Time taken: 0.243 seconds

SEQUENCEFILE
SequenceFile是Hadoop API提供的一种二进制文件支持,其具有使用方便、可分割、可压缩的特点。
SequenceFile支持三种压缩选择:NONE, RECORD, BLOCK。 Record压缩率低,一般建议使用BLOCK压缩。
示例:

> create table test2(str STRING)
> STORED AS SEQUENCEFILE;
OK
Time taken: 5.526 seconds
hive> SET hive.exec.compress.output=true;
hive> SET io.seqfile.compression.type=BLOCK;
hive> INSERT OVERWRITE TABLE test2 SELECT * FROM test1;

RCFILE
RCFILE是一种行列存储相结合的存储方式。首先,其将数据按行分块,保证同一个record在一个块上,避免读一个记录需要读取多个block。其次,块数据列式存储,有利于数据压缩和快速的列存取。RCFILE文件示例:
> create table test3(str STRING)
> STORED AS RCFILE;
OK
Time taken: 0.184 seconds
> INSERT OVERWRITE TABLE test3 SELECT * FROM test1;
实践证明RCFile目前没有性能优势, 只有存储上能省10%的空间, 作者自己都承认. Facebook用它也就是为了存储,. RCFile目前没有使用特殊的压缩手段, 例如算术编码, 后缀树等, 没有像InfoBright那样能skip 大量io.
ORC格式
ORC是RCfile的升级版,性能有大幅度提升,
而且数据可以压缩存储,压缩比和Lzo压缩差不多,比text文件压缩比可以达到70%的空间。而且读性能非常高,可以实现高效查询。
具体介绍https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC
建表语句如下:
同时,将ORC的表中的NULL取值,由默认的\N改为'',
方式一:
hive> show create table test_orc;
CREATE TABLE `test_orc`(
`advertiser_id` string,
`ad_plan_id` string,
`cnt` bigint)
PARTITIONED BY (
`day` string,
`type` tinyint COMMENT '0 as bid, 1 as win, 2 as ck',
`hour` tinyint)
ROW FORMAT DELIMITED
NULL DEFINED AS ''
STORED AS INPUTFORMAT
'org.apache.hadoop.hive.ql.io.orc.OrcInputFormat'
OUTPUTFORMAT
'org.apache.hadoop.hive.ql.io.orc.OrcOutputFormat'
LOCATION
'hdfs://namenode/hivedata/warehouse/pmp.db/test_orc'
TBLPROPERTIES (
'last_modified_by'='pmp_bi',
'last_modified_time'='',
'transient_lastDdlTime'='')
方式二:
drop table test_orc;
create table if not exists test_orc(
advertiser_id string,
ad_plan_id string,
cnt BIGINT
) partitioned by (day string, type TINYINT COMMENT '0 as bid, 1 as win, 2 as ck', hour TINYINT)
ROW FORMAT SERDE
'org.apache.hadoop.hive.ql.io.orc.OrcSerde'
with serdeproperties('serialization.null.format' = '')
STORED AS ORC; 查看结果
hive> show create table test_orc;
CREATE TABLE `test_orc`(
`advertiser_id` string,
`ad_plan_id` string,
`cnt` bigint)
PARTITIONED BY (
`day` string,
`type` tinyint COMMENT '0 as bid, 1 as win, 2 as ck',
`hour` tinyint)
ROW FORMAT DELIMITED
NULL DEFINED AS ''
STORED AS INPUTFORMAT
'org.apache.hadoop.hive.ql.io.orc.OrcInputFormat'
OUTPUTFORMAT
'org.apache.hadoop.hive.ql.io.orc.OrcOutputFormat'
LOCATION
'hdfs://namenode/hivedata/warehouse/pmp.db/test_orc'
TBLPROPERTIES (
'transient_lastDdlTime'='')
方式三:
drop table test_orc;
create table if not exists test_orc(
advertiser_id string,
ad_plan_id string,
cnt BIGINT
) partitioned by (day string, type TINYINT COMMENT '0 as bid, 1 as win, 2 as ck', hour TINYINT)
ROW FORMAT DELIMITED
NULL DEFINED AS ''
STORED AS ORC; 查看结果
hive> show create table test_orc;
CREATE TABLE `test_orc`(
`advertiser_id` string,
`ad_plan_id` string,
`cnt` bigint)
PARTITIONED BY (
`day` string,
`type` tinyint COMMENT '0 as bid, 1 as win, 2 as ck',
`hour` tinyint)
ROW FORMAT DELIMITED
NULL DEFINED AS ''
STORED AS INPUTFORMAT
'org.apache.hadoop.hive.ql.io.orc.OrcInputFormat'
OUTPUTFORMAT
'org.apache.hadoop.hive.ql.io.orc.OrcOutputFormat'
LOCATION
'hdfs://namenode/hivedata/warehouse/pmp.db/test_orc'
TBLPROPERTIES (
'transient_lastDdlTime'='')
自定义格式
当用户的数据文件格式不能被当前 Hive 所识别的时候,可以自定义文件格式。
用户可以通过实现inputformat和outputformat来自定义输入输出格式,参考代码:.\hive-0.8.1\src\contrib\src\java\org\apache\hadoop\hive\contrib\fileformat\base64
实例:
> create table test4(str STRING)
> stored as
> inputformat 'org.apache.hadoop.hive.contrib.fileformat.base64.Base64TextInputFormat'
> outputformat 'org.apache.hadoop.hive.contrib.fileformat.base64.Base64TextOutputFormat';
$ cat test1.txt
aGVsbG8saGl2ZQ==
aGVsbG8sd29ybGQ=
aGVsbG8saGFkb29w
test1文件为base64编码后的内容,decode后数据为:
hello,hive
hello,world
hello,hadoop
load数据并查询:

hive> LOAD DATA LOCAL INPATH '/home/work/test1.txt' INTO TABLE test4;
Copying data from file:/home/work/test1.txt
Copying file: file:/home/work/test1.txt
Loading data to table default.test4
OK
Time taken: 4.742 seconds
hive> select * from test4;
OK
hello,hive
hello,world
hello,hadoop
Time taken: 1.953 seconds

总结
相比TEXTFILE和SEQUENCEFILE,RCFILE由于列式存储方式,数据加载时性能消耗较大,但是具有较好的压缩比和查询响应。数据仓库的特点是一次写入、多次读取,因此,整体来看,RCFILE相比其余两种格式具有较明显的优势。
参考链接: http://blog.csdn.net/yfkiss/article/details/7787742
http://blog.csdn.net/longshenlmj/article/details/51702343
http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2843318.html
Hive文件的存储格式的更多相关文章
- Hive文件存储格式
hive文件存储格式 1.textfile textfile为默认格式 存储方式:行存储 磁盘开销大 数据解析开销大 压缩的text文件 hive无法进行合并和拆分 2.sequencef ...
- Hive文件存储格式和hive数据压缩
一.存储格式行存储和列存储 二.Hive文件存储格式 三.创建语句和压缩 一.存储格式行存储和列存储 行存储可以理解为一条记录存储一行,通过条件能够查询一整行数据. 列存储,以字段聚集存储,可以理解为 ...
- 第3节 hive高级用法:15、hive的数据存储格式介绍
hive当中的数据存储格式: 行式存储:textFile sequenceFile 都是行式存储 列式存储:orc parquet 可以使我们的数据压缩的更小,压缩的更快 数据查询的时候尽量不要用se ...
- hive的数据存储格式
hive的数据存储格式 Hive支持的存储数的格式主要有:TEXTFILE(行式存储) .SEQUENCEFILE(行式存储).ORC(列式存储).PARQUET(列式存储). 1 列式存储和行式存储 ...
- hive常见的存储格式
Hive常见文件存储格式 背景:列式存储和行式存储 首先来看一下一张表的存储格式: 字段A 字段B 字段C A1 B1 C1 A2 B2 C2 A3 B3 C3 A4 B4 C4 A5 B5 C5 行 ...
- Hive文件与记录格式
1. Hive文件与记录格式 Create table 有多种用法,例如STORED AS SEQUENCEFILE, ROW FORMAT DELIMITED, SERDE, INPUTFORMAT ...
- HIVE文件
注册表的本地实体文件, 察看位置,以及映射本地文件到注册表中的位置, HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\hivelist 在这里写 ...
- 【图解】Hive文件存储格式
摘自:https://blog.csdn.net/xueyao0201/article/details/79103973 引申阅读原理篇: 大数据:Hive - ORC 文件存储格式 大数据:Parq ...
- hive表的存储格式; ORC格式的使用
hive表的源文件存储格式有几类: 1.TEXTFILE 默认格式,建表时不指定默认为这个格式,导入数据时会直接把数据文件拷贝到hdfs上不进行处理.源文件可以直接通过hadoop fs -cat 查 ...
随机推荐
- tomcat config https 443
设置https: <Connector port="443" protocol="HTTP/1.1" SSLEnabled="true" ...
- ContentNegotiatingViewResolver多种输出格式实例: json/jsp/xml/xls/pdf
ContentNegotiatingViewResolver多种输出格式实例: json/jsp/xml/xls/pdf 本例用的是javaConfig配置 以pizza为例. json输出需要用到的 ...
- Python str 与 bytes 类型 之间的转换
bytes:字节数组,通常用它可以描述 “一个字符串”,只不过该字符串是 “bytes类型”,所以容易与str类型混淆,他们二者之间的转换: https://blog.csdn.net/lanchu ...
- UVA-11988 Broken Keyboard (a.k.a. Beiju Text) (链表 或 递归)
题目大意:将一个字符串改变顺序后输出.遇到“[”就将后面内容拿到最前面输出,遇到“]”就将后面的内容拿到最后面输出. 题目分析:用nxt[i]数组表示i后面的字符的下标,实际上就是以字符i为头建立链表 ...
- MyBatis Generator配置文件context元素的defaultModelType属性
MyBatis Generator配置文件context元素的defaultModelType属性 MyBatis Generator配置文件context元素有一个defaultModelType属 ...
- jspf、jsp小记
jsp页面:
- java中可以让程序暂停几秒执行的代码
//n为毫秒数 try { Thread.sleep ( n ) ; } catch (InterruptedException ie){} try { TimeUnit.SECONDS.sleep( ...
- ssh远程操作服务器
登录方式 ssh account@192.168.xxx.xxx 输入密码 远程上传下载文件 上传: scp filepath acount@192.168.xxx.xxx:path filepath ...
- 结合File类浅析递归的使用
递归算法就是方法自身直接或者间接地调用到了自身,它是一种写起来很简单,但理解起来不那么简单的算法. 一个功能在被重复地调用,并且运算的结果和上一次的调用有关, 这种时候,可以使用递归. * 注意: * ...
- Loj 114 k大异或和
Loj 114 k大异或和 构造线性基时有所变化.试图构造一个线性基,使得从高到低位走,异或上一个非 \(0\) 的数,总能变大. 构造时让任意两个 \(bas\) 上有值的 \(i,j\) ,满足 ...