题目链接

BZOJ3451

题解

考虑每个点产生的贡献,即为该点在点分树中的深度期望值

由于期望的线性,最后的答案就是每个点贡献之和

对于点对\((i,j)\),考虑\(j\)成为\(i\)祖先的概率,记为\(P(i,j)\)

那么

\[ans = \sum\limits_{i = 1}^{n}\sum\limits_{j = 1}^{n} P(i,j)
\]

由于是随机选点,\(i\)到\(j\)路径上所有点第一个被选中的除非是\(j\),否则\(j\)就不是\(i\)的祖先

由于是随机的,所以\(P(i,j) = \frac{1}{dis(i,j)}\)

综上

\[ans = \sum\limits_{i = 1}^{n}\sum\limits_{j = 1}^{n} \frac{1}{dis(i,j)}
\]

为了方便计算,我们可以枚举\(dis\),计算有多少个长度为\(dis\)的点对

直接枚举 + 点分是\(O(n^2logn)\)的,我们考虑能不能一起算

当然可以,两个子树之间的贡献合并实际上就是一个生成函数乘积

我们对于一棵分治树,先求出整棵树各个深度数量数列形成的生成函数,平方一次

由于会包含回到同一个子树的情况,在向子树求一遍减去即可

这样就优化成了\(O(nlog^2n)\)

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 150005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int n,h[maxn],ne = 1;
struct EDGE{int to,nxt;}ed[maxn];
inline void build(int u,int v){
ed[++ne] = (EDGE){v,h[u]}; h[u] = ne;
ed[++ne] = (EDGE){u,h[v]}; h[v] = ne;
}
const int G = 3,P = 998244353;
int R[maxn];
inline int qpow(int a,int b){
int re = 1;
for (; b; b >>= 1,a = 1ll * a * a % P)
if (b & 1) re = 1ll * re * a % P;
return re;
}
void NTT(int* a,int n,int f){
for (int i = 0; i < n; i++) if (i < R[i]) swap(a[i],a[R[i]]);
for (int i = 1; i < n; i <<= 1){
int gn = qpow(G,(P - 1) / (i << 1));
for (int j = 0; j < n; j += (i << 1)){
int g = 1,x,y;
for (int k = 0; k < i; k++,g = 1ll * g * gn % P){
x = a[j + k],y = 1ll * g * a[j + k + i] % P;
a[j + k] = (x + y) % P,a[j + k + i] = ((x - y) % P + P) % P;
}
}
}
if (f == 1) return;
int nv = qpow(n,P - 2); reverse(a + 1,a + n);
for (int i = 0; i < n; i++) a[i] = 1ll * a[i] * nv % P;
}
LL ans[maxn];
int F[maxn],fa[maxn],siz[maxn],vis[maxn],N,rt;
void getrt(int u){
siz[u] = 1; F[u] = 0;
Redge(u) if (!vis[to = ed[k].to] && to != fa[u]){
fa[to] = u; getrt(to);
siz[u] += siz[to];
F[u] = max(F[u],siz[to]);
}
F[u] = max(F[u],N - siz[u]);
if (F[u] < F[rt]) rt = u;
}
int dep[maxn],md;
int A[maxn],B[maxn];
void dfs(int u){
A[dep[u]]++; siz[u] = 1; md = max(md,dep[u]);
Redge(u) if (!vis[to = ed[k].to] && to != fa[u]){
fa[to] = u; dep[to] = dep[u] + 1; dfs(to);
siz[u] += siz[to];
}
}
void dfs1(int u){
B[dep[u]]++; md = max(md,dep[u]);
Redge(u) if (!vis[to = ed[k].to] && to != fa[u])
dfs1(to);
}
void solve(int u){
vis[u] = true; siz[u] = N; fa[u] = 0;
for (int i = 0; i <= N; i++) A[i] = B[i] = 0;
dep[u] = 0; A[0] = 1; md = 0;
Redge(u) if (!vis[to = ed[k].to]){
fa[to] = u; dep[to] = 1; dfs(to);
}
int m = (md << 1),L = 0,n = 1;
while (n <= m) n <<= 1,L++;
for (int i = 1; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
for (int i = md + 1; i < n; i++) A[i] = 0;
NTT(A,n,1);
for (int i = 0; i < n; i++) A[i] = 1ll * A[i] * A[i] % P;
NTT(A,n,-1);
for (int i = 0; i < n; i++) ans[i + 1] += 1ll * A[i];
Redge(u) if (!vis[to = ed[k].to]){
md = 1; dfs1(to);
m = (md << 1),L = 0,n = 1;
while (n <= m) n <<= 1,L++;
for (int i = 1; i < n; i++) R[i] = (R[i >> 1] >> 1) | ((i & 1) << (L - 1));
NTT(B,n,1);
for (int i = 0; i < n; i++) B[i] = 1ll * B[i] * B[i] % P;
NTT(B,n,-1);
for (int i = 0; i < n; i++) ans[i + 1] -= 1ll * B[i];
for (int i = 0; i < n; i++) B[i] = 0;
}
Redge(u) if (!vis[to = ed[k].to]){
N = siz[to]; F[rt = 0] = INF; getrt(to);
solve(rt);
}
}
int main(){
n = read();
for (int i = 1; i < n; i++) build(read() + 1,read() + 1);
F[rt = 0] = INF; N = n; getrt(1);
solve(rt);
double Ans = 0;
//REP(i,n) printf("dis %d cnt %lld\n",i,ans[i]);
for (int i = 1; i <= n; i++) Ans += 1.0 / i * ans[i];
printf("%.4lf\n",Ans);
return 0;
}

BZOJ3451 Tyvj1953 Normal 【期望 + 点分治 + NTT】的更多相关文章

  1. 【BZOJ3451】Normal (点分治)

    [BZOJ3451]Normal (点分治) 题面 BZOJ 题解 显然考虑每个点的贡献.但是发现似乎怎么算都不好计算其在点分树上的深度. 那么考虑一下这个点在点分树中每一次被计算的情况,显然就是其在 ...

  2. bzoj 3451: Tyvj1953 Normal [fft 点分治 期望]

    3451: Tyvj1953 Normal 题意: N 个点的树,点分治时等概率地随机选点,代价为当前连通块的顶点数量,求代价的期望值 百年难遇的点分治一遍AC!!! 今天又去翻了一下<具体数学 ...

  3. BZOJ3451: Tyvj1953 Normal

    题解: 好神的一道题.蒟蒻只能膜拜题解. 考虑a对b的贡献,如果a是a-b路径上第一个删除的点,那么给b贡献1. 所以转化之后就是求sigma(1/dist(i,j)),orz!!! 如果不是分母的话 ...

  4. 【bzoj3451】Tyvj1953 Normal 期望+树的点分治+FFT

    题目描述 给你一棵 $n$ 个点的树,对这棵树进行随机点分治,每次随机一个点作为分治中心.定义消耗时间为每层分治的子树大小之和,求消耗时间的期望. 输入 第一行一个整数n,表示树的大小接下来n-1行每 ...

  5. BZOJ3451 Tyvj1953 Normal 点分治 多项式 FFT

    原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ3451.html 题目传送门 - BZOJ3451 题意 给定一棵有 $n$ 个节点的树,在树上随机点分 ...

  6. [BZOJ3451][Tyvj1953]Normal(点分治+FFT)

    https://www.cnblogs.com/GXZlegend/p/8611948.html #include<cmath> #include<cstdio> #inclu ...

  7. 【BZOJ3451】Tyvj1953 Normal 点分治+FFT+期望

    [BZOJ3451]Tyvj1953 Normal Description 某天WJMZBMR学习了一个神奇的算法:树的点分治!这个算法的核心是这样的:消耗时间=0Solve(树 a) 消耗时间 += ...

  8. #565. 「LibreOJ Round #10」mathematican 的二进制(期望 + 分治NTT)

    题面 戳这里,题意简单易懂. 题解 首先我们发现,操作是可以不考虑顺序的,因为每次操作会加一个 \(1\) ,每次进位会减少一个 \(1\) ,我们就可以考虑最后 \(1\) 的个数(也就是最后的和) ...

  9. LOJ2541 PKUWC2018猎人杀(概率期望+容斥原理+生成函数+分治NTT)

    考虑容斥,枚举一个子集S在1号猎人之后死.显然这个概率是w1/(Σwi+w1) (i∈S).于是我们统计出各种子集和的系数即可,造出一堆形如(-xwi+1)的生成函数,分治NTT卷起来就可以了. #i ...

随机推荐

  1. C#特性的简单介绍

    特性应该我们大多接触过,比喻经常使用的[Obsolete],[Serializable]等下面我就主要介绍一个特性的一些用法 摘自MSDN定义:用以将元数据或声明信息与代码(程序集.类型.方法.属性等 ...

  2. symfony注册Twig模板中使用自定义PHP方法

    // 注:只是在此做下记录,有兴趣的可以参考,不做实际教程文档// 官方文档,https://symfony.com/doc/2.8/templating/twig_extension.html// ...

  3. linux信号处理相关知识

      因为要处理最近项目中碰上的多个子进程退出信号同时到达,导致程序不当产生core的情况,今天我花了时间看了一些关于linux信号处理的博客. 总结一下:(知识未经实践) linux信号分两种,一种实 ...

  4. Linux目录与文件操作

    文件命名规则: 1.严格区分大小写: 2.长度不能超过255个字符: 3.不能使用/当文件名 mkdir:创建空目录 -p:parent,父目录,逐级创建 -v:verbose,打印详细信息 命令行展 ...

  5. 小白初识 - 归并排序(MergeSort)

    归并排序是一种典型的用分治的思想解决问题的排序方式. 它的原理就是:将一个数组从中间分成两半,对分开的两半再分成两半,直到最终分到最小的单位(即单个元素)的时候, 将已经分开的数据两两合并,并且在合并 ...

  6. 二叉树的深度<java版>

    二叉树的结构 二叉树是比较常见的一种的一种数据结构. 首先看看二叉树的数据结构: //由左节点和右节点以及一个节点值构成 public class TreeNode{ TreeNode leftNod ...

  7. openstack-r版(rocky)搭建基于centos7.4 的openstack swift对象存储服务 一

    openstack-r版(rocky)搭建基于centos7.4 的openstack swift对象存储服务 一 openstack-r版(rocky)搭建基于centos7.4 的openstac ...

  8. Linux内核学习笔记(4)-- wait、waitpid、wait3 和 wait4

    进程调用 exit() 退出执行后,被设置为僵死状态,这时父进程可以通过 wait4() 系统调用查询子进程是否终结,之后再进行最后的操作,彻底删除进程所占用的内存资源. wait4() 系统调用由 ...

  9. leetcode个人题解——#31 Next Permutation

    写这题时脑子比较混乱,重写了一遍wiki大佬的解法. 算法: According to Wikipedia, a man named Narayana Pandita presented the fo ...

  10. Action Required: Please provide your Tax Identity Information - Amazon Seller Tax Identity Collection

    Hello ***,   Your selling privileges have been suspended because we have not received required tax i ...