51Nod 1070 Bash游戏 V4(斐波那契博弈)
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1070
题意:
思路:
这个是斐波那契博弈,http://blog.csdn.net/acm_cxlove/article/details/7835016,关于斐波那契博弈的介绍,可以看看这篇博客。以下的内容便是转自这篇博客。
1、当i=2时,先手只能取1颗,显然必败,结论成立。
2、假设当i<=k时,结论成立。
则当i=k+1时,f[i] = f[k]+f[k-1]。
则我们可以把这一堆石子看成两堆,简称k堆和k-1堆。
(一定可以看成两堆,因为假如先手第一次取的石子数大于或等于f[k-1],则后手可以直接取完f[k],因为f[k] < 2*f[k-1])
对于k-1堆,由假设可知,不论先手怎样取,后手总能取到最后一颗。下面我们分析一下后手最后取的石子数x的情况。
如果先手第一次取的石子数y>=f[k-1]/3,则这小堆所剩的石子数小于2y,即后手可以直接取完,此时x=f[k-1]-y,则x<=2/3*f[k-1]。
我们来比较一下2/3*f[k-1]与1/2*f[k]的大小。即4*f[k-1]与3*f[k]的大小,由数学归纳法不难得出,后者大。
所以我们得到,x<1/2*f[k]。
即后手取完k-1堆后,先手不能一下取完k堆,所以游戏规则没有改变,则由假设可知,对于k堆,后手仍能取到最后一颗,所以后手必胜。
即i=k+1时,结论依然成立。
对于不是FIB数,首先进行分解。
分解的时候,要取尽量大的Fibonacci数。
比如分解85:85在55和89之间,于是可以写成85=55+30,然后继续分解30,30在21和34之间,所以可以写成30=21+9,
依此类推,最后分解成85=55+21+8+1。
则我们可以把n写成 n = f[a1]+f[a2]+……+f[ap]。(a1>a2>……>ap)
我们令先手先取完f[ap],即最小的这一堆。由于各个f之间不连续,则a(p-1) > ap + 1,则有f[a(p-1)] > 2*f[ap]。即后手只能取f[a(p-1)]这一堆,且不能一次取完。
此时后手相当于面临这个子游戏(只有f[a(p-1)]这一堆石子,且后手先取)的必败态,即先手一定可以取到这一堆的最后一颗石子。
同理可知,对于以后的每一堆,先手都可以取到这一堆的最后一颗石子,从而获得游戏的胜利。
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<vector>
#include<queue>
#include<cmath>
#include<map>
using namespace std; const int maxn=1e9+; int n;
int c[];
map<int,int> num; void init()
{
c[]=;
c[]=;
num[]=;
num[]=;
while(c[]<=maxn)
{
c[]=c[]+c[];
num[c[]]=;
c[]=c[];
c[]=c[];
}
} int main()
{
//freopen("D:\\input.txt","r",stdin);
init();
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
if(num[n]) puts("B");
else puts("A");
}
}
51Nod 1070 Bash游戏 V4(斐波那契博弈)的更多相关文章
- 51nod 1070 Bash游戏 V4 (斐波那契博弈)
题目:传送门. 有一堆个数为n(n>=2)的石子,游戏双方轮流取石子,规则如下: 1)先手不能在第一次把所有的石子取完,至少取1颗: 2)之后每次可以取的石子数至少为1,至多为对手刚取的石子数的 ...
- 51nod Bash游戏(V1,V2,V3,V4(斐波那契博弈))
Bash游戏V1 有一堆石子共同拥有N个. A B两个人轮流拿.A先拿.每次最少拿1颗.最多拿K颗.拿到最后1颗石子的人获胜.如果A B都很聪明,拿石子的过程中不会出现失误.给出N和K,问最后谁能赢得 ...
- HDU.2516 取石子游戏 (博弈论 斐波那契博弈)
HDU.2516 取石子游戏 (博弈论 斐波那契博弈) 题意分析 简单的斐波那契博弈 博弈论快速入门 代码总览 #include <bits/stdc++.h> #define nmax ...
- HDU 2516 取石子游戏(斐波那契博弈)
取石子游戏 Time Limit: 2000/1000 MS(Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submissi ...
- 题解报告:hdu 2516 取石子游戏(斐波那契博弈)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2516 Problem Description 1堆石子有n个,两人轮流取.先取者第1次可以取任意多个, ...
- hdu 2516 取石子游戏 (斐波那契博弈)
题意:1堆石子有n个,两人轮流取.先取者第1次可以取任意多个,但不能全部取完.以后每次取的石子数不能超过上次取子数的2倍. 取完者胜,先取者负输出"Second win",先取者胜 ...
- 51nod 1070 Bash游戏 V4
这种博弈题 都是打表找规律 可我连怎么打表都不会 这个是凑任务的吧....以后等脑子好些了 再琢磨吧 就是斐波那契数列中的数 是必败态 #include<bits/stdc++.h> u ...
- ICG游戏:斐波那契博弈
描述: 有一堆个数为n(n>=2)的石子,游戏双方轮流取石子,规则如下: 1)先手不能在第一次把所有的石子取完,至少取1颗: 2)之后每次可以取的石子数至少为1,至多为对手刚取的石子数的2倍: ...
- hdu2516-取石子游戏 (斐波那契博弈)【博弈 二分查找】
http://acm.hdu.edu.cn/showproblem.php?pid=2516 取石子游戏 Time Limit: 2000/1000 MS (Java/Others) Memor ...
随机推荐
- 以吃货的角度去理解云计算中On-Premise、IaaS、PaaS和SaaS
了解云计算的一定都听过四个“高大上”的概念:On-Premise(本地部署),IaaS(基础设施及服务).PaaS(平台即服务)和SaaS(软件即服务),这几个术语并不好理解.不过,如果你是个吃货,还 ...
- iOS面试3
转:http://studentdeng.github.io/blog/2014/02/11/baidu-interview/ 百度面试 FEB 11TH, 2014 | COMMENTS 百度移动云 ...
- create sequence
create sequence seq_test start with 3 increment by 1 minvalue 1 --范围-(1027 -1) maxvalue 99999999999 ...
- 310实验室(七)OptimizationTemplateLibrary
利用泛型编程思想,C++模板. 首先定义变量或者重新typedef variables: 模板中的变量:_TRandom.double _TReal._TProblem::TDecision _TD ...
- SVN创建主干,分支、合并分支
1.创建主干(trunk) 本文承接上文部分内容:http://www.cnblogs.com/dadonggg/p/8383696.html:部分不明,可以访问这篇文章. 当我们创建完代码仓库后,创 ...
- [转]CentOS 6.4下Squid代理服务器的安装与配置
一.简介 代理服务器英文全称是Proxy Server,其功能就是代理网络用户去取得网络信息. Squid是一个缓存Internet 数据的软件,其接收用户的下载申请,并自动处理所下载的数据.当一个用 ...
- AIX安装CDE,CDE服务开启和关闭
1.将AIX的光盘镜像通过ftp工具上传至/mnt目录下,如下图: 2.创建目录/media作为默认的AIX光盘挂载区 # mkdir /media 3.将AIX的第一张光盘挂载到/media目录下: ...
- 设计模式之——visitor模式
visitor模式,又叫访问者模式,把结构和数据分开,编写一个访问者,去访问数据结构中的元素,然后把对各元素的处理全部交给访问者类.这样,当需要增加新的处理时候,只需要编写新的 访问者类,让数据结构可 ...
- Qt::QWindow多窗口争抢置顶状态解决方案
有时候我们会有这种需求,自己的桌面程序需要置顶,但是程序包含了很多窗口,可能我们要求窗口1,2都在其它桌面程序之上,但是窗口1必须随时在窗口2之上. Qt提供的置顶方式是在windowsflags上增 ...
- UChome Feed 机制
Feed,本意是“饲料.饲养.(新闻的)广播等”. 我们就拿用户发表日志这个动作来简单看看Uchome的feed机制. 用户发布日志所使用的函数是 source/function_blog.php文件 ...