1.AlexNet是2012年最早的第一代神经网络,整个神经网络的构架是8层的网络结构。网络刚开始使用11*11获得较大的感受野,随后使用5*5和3*3做特征的提取,最后使用3个全连接层做得分值得运算,使用的是softmax分类器

2. VGG-net,网络的特点是全部使用3*3的卷积,通常有两个版本一个是16-VGG和19-VGG,每一进行完一次maxpool,都进行一次维度的提升,为了减少由于降维压缩而导致的信息损失。最后使用3个全连接层进行得分值得预测,使用的是softmax计算损失值

深度学习原理与框架-卷积网络细节-经典网络架构 1.AlexNet 2.VGG的更多相关文章

  1. 深度学习原理与框架-卷积网络细节-图像分类与图像位置回归任务 1.模型加载 2.串接新的全连接层 3.使用SGD梯度对参数更新 4.模型结果测试 5.各个模型效果对比

    对于图像的目标检测任务:通常分为目标的类别检测和目标的位置检测 目标的类别检测使用的指标:准确率, 预测的结果是类别值,即cat 目标的位置检测使用的指标:欧式距离,预测的结果是(x, y, w, h ...

  2. 深度学习原理与框架-卷积网络细节-三代物体检测算法 1.R-CNN 2.Fast R-CNN 3.Faster R-CNN

    目标检测的选框操作:第一步:找出一些边缘信息,进行图像合并,获得少量的边框信息 1.R-CNN, 第一步:进行图像的选框,对于选出来的框,使用卷积计算其相似度,选择最相似ROI的选框,即最大值抑制RO ...

  3. 深度学习原理与框架-卷积神经网络-cifar10分类(图片分类代码) 1.数据读入 2.模型构建 3.模型参数训练

    卷积神经网络:下面要说的这个网络,由下面三层所组成 卷积网络:卷积层 + 激活层relu+ 池化层max_pool组成 神经网络:线性变化 + 激活层relu 神经网络: 线性变化(获得得分值) 代码 ...

  4. 深度学习原理与框架-卷积神经网络基本原理 1.卷积层的前向传播 2.卷积参数共享 3. 卷积后的维度计算 4. max池化操作 5.卷积流程图 6.卷积层的反向传播 7.池化层的反向传播

    卷积神经网络的应用:卷积神经网络使用卷积提取图像的特征来进行图像的分类和识别       分类                        相似图像搜索                        ...

  5. [源码解析] 深度学习分布式训练框架 horovod (12) --- 弹性训练总体架构

    [源码解析] 深度学习分布式训练框架 horovod (12) --- 弹性训练总体架构 目录 [源码解析] 深度学习分布式训练框架 horovod (12) --- 弹性训练总体架构 0x00 摘要 ...

  6. 深度学习原理与框架-图像补全(原理与代码) 1.tf.nn.moments(求平均值和标准差) 2.tf.control_dependencies(先执行内部操作) 3.tf.cond(判别执行前或后函数) 4.tf.nn.atrous_conv2d 5.tf.nn.conv2d_transpose(反卷积) 7.tf.train.get_checkpoint_state(判断sess是否存在

    1. tf.nn.moments(x, axes=[0, 1, 2])  # 对前三个维度求平均值和标准差,结果为最后一个维度,即对每个feature_map求平均值和标准差 参数说明:x为输入的fe ...

  7. 深度学习原理与框架-Tfrecord数据集的读取与训练(代码) 1.tf.train.batch(获取batch图片) 2.tf.image.resize_image_with_crop_or_pad(图片压缩) 3.tf.train.per_image_stand..(图片标准化) 4.tf.train.string_input_producer(字符串入队列) 5.tf.TFRecord(读

    1.tf.train.batch(image, batch_size=batch_size, num_threads=1) # 获取一个batch的数据 参数说明:image表示输入图片,batch_ ...

  8. 深度学习原理与框架- tf.nn.atrous_conv2d(空洞卷积) 问题:空洞卷积增加了卷积核的维度,为什么不直接使用7*7呢

    空洞卷积, 从图中可以看出,对于一个3*3的卷积,可以通过使用增加卷积的空洞的个数,来获得较大的感受眼, 从第一幅图中可以看出3*3的卷积,可以通过补零的方式,变成7*7的感受眼,这里补零的个数为1, ...

  9. 深度学习原理与框架- tf.nn.conv2d_transpose(反卷积操作) tf.nn.conv2d_transpose(进行反卷积操作) 对于stride的理解存在问题?

    反卷积操作: 首先对需要进行维度扩张的feature_map 进行补零操作,然后使用3*3的卷积核,进行卷积操作,使得其维度进行扩张,图中可以看出,2*2的feature经过卷积变成了4*4.    ...

随机推荐

  1. 关于socket阻塞与非阻塞情况下的recv、send、read、write返回值---部分内容可能不确切,待讨论

    1.阻塞模式与非阻塞模式下recv的返回值各代表什么意思?有没有区别?(就我目前了解阻塞与非阻塞recv返回值没有区分,都是 <0:出错,=0:连接关闭,>0接收到数据大小,特别:返回值  ...

  2. 峰Redis学习(9)Redis 集群(概述)

    第一节:Redis 集群概述 redis cluster是去中心化,去中间件的,也就是说,集群中的每个节点都是平等的关系,都是对等的,每个节点都保存各自的数据和整个集群的状态.每个节点都和其他所有节点 ...

  3. 描述wxWidgets中事件处理的类型转化

    wxWidgets是一个比较常用的UI界面库,我曾经试着使用wxWidgets写一个UI编辑工具,在此期间,学习了一些wxWidgets的知识.我对wxWidgets的绑定(Bind)比较好奇,想知道 ...

  4. PHP程序员的进阶之路

    第1阶段:初级PHP程序员 重点:把LNMP搞熟练(核心是安装配置基本操作)目标:能够完成基本的LNMP环境安装,简单配置维护:能够做基本的简单系统的PHP开发:能够在PHP中型系统中支持某个PHP功 ...

  5. 视角同步NewViewTarget

    SetViewTargetwithBlen说明: http://api.unrealengine.com/INT/BlueprintAPI/Game/Player/SetViewTargetwithB ...

  6. shiro 身份验证

    shiro身份验证: 参考链接:http://jinnianshilongnian.iteye.com/blog/2019547 即在应用中证明是本人进行操作,一般通过用户名来证明 在shiro中,用 ...

  7. servlet的执行过程简介(从tomcat服务器和web应用的角度)

    该链接详解htttp请求和响应 http://www.cnblogs.com/goxcheer/p/8424175.html 1.web应用工程发布到tomcat服务器 2.客户端访问某个web资源, ...

  8. cocos设置 相机矩阵和投影矩阵 源码浅析

    在cocos中,最后设置视口大小,相机矩阵,裁剪矩阵是在setProjection方法中,源码如下: void Director::setProjection(Projection projectio ...

  9. CS229 6.2 Neurons Networks Backpropagation Algorithm

    今天得主题是BP算法.大规模的神经网络可以使用batch gradient descent算法求解,也可以使用 stochastic gradient descent 算法,求解的关键问题在于求得每层 ...

  10. .NET/C#发起GET和POST请求的几种方法

    using System.Net; GET:   1 2 3 var request = (HttpWebRequest)WebRequest.Create("http://www.lead ...