题目大意:
给定一张$k$个结点,$m$条边的无向图,其中有$n$个点被标记,在这$k$个点中找出一个点使得这个点到那$n$个点的最短距离之和最小,求出这个距离和。

思路:
对于每个标记结点跑最短路,最后枚举每个结点,求出其到各个标记结点的最短距离和,取$min$。

 #include<cstdio>
#include<cctype>
#include<functional>
#include<ext/pb_ds/priority_queue.hpp>
inline int getint() {
char ch;
while(!isdigit(ch=getchar()));
int x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
const int inf=0x7fffffff;
const int V=;
struct Edge {
int to,w;
};
std::vector<Edge> e[V];
inline void add_edge(const int u,const int v,const int w) {
e[u].push_back((Edge){v,w});
}
struct Vertex {
int id,dis;
bool operator > (const Vertex &another) const {
return dis>another.dis;
}
};
int k;
int dis[V][V];
__gnu_pbds::priority_queue<Vertex,std::greater<Vertex> > q;
__gnu_pbds::priority_queue<Vertex,std::greater<Vertex> >::point_iterator p[V];
inline void Dijkstra(const int s,int *dis) {
q.clear();
for(int i=;i<=k;i++) {
p[i]=q.push((Vertex){i,dis[i]=(i==s)?:inf});
}
while(q.top().dis!=inf) {
int x=q.top().id;
for(unsigned i=;i<e[x].size();i++) {
Edge &y=e[x][i];
if(dis[x]+y.w<dis[y.to]) {
q.modify(p[y.to],(Vertex){y.to,dis[y.to]=dis[x]+y.w});
}
}
q.modify(p[x],(Vertex){x,inf});
}
}
int main() {
int n=getint();
k=getint();
int c=getint();
int cow[n];
for(int i=;i<n;i++) cow[i]=getint();
while(c--) {
int u=getint(),v=getint(),w=getint();
add_edge(u,v,w);
add_edge(v,u,w);
}
for(int i=;i<n;i++) {
Dijkstra(cow[i],dis[i]);
}
int ans=inf;
for(int i=;i<=k;i++) {
int tmp=;
for(int j=;j<n;j++) {
tmp+=dis[j][i];
}
ans=std::min(ans,tmp);
}
printf("%d\n",ans);
return ;
}

[USACO3.2]Sweet Butter的更多相关文章

  1. 洛谷P1828 香甜的黄油 Sweet Butter

    P1828 香甜的黄油 Sweet Butter 241通过 724提交 题目提供者JOHNKRAM 标签USACO 难度普及+/提高 提交  讨论  题解 最新讨论 我的SPFA为什么TLE.. 为 ...

  2. Sweet Butter 香甜的黄油

    Sweet Butter 香甜的黄油 题目大意:m个点,n头奶牛,p条边,每一头奶牛在一个点上,一个点可以有多只奶牛,求这样一个点,使得所有奶牛到这个点的距离之和最小. 注释:n<=500 , ...

  3. 【香甜的黄油 Sweet Butter】

    [香甜的黄油 Sweet Butter] 洛谷P1828 https://www.luogu.org/problemnew/show/P1828 JDOJ 1803 https://neooj.com ...

  4. P1828 香甜的黄油 Sweet Butter 最短路 寻找一个点使得所有点到它的距离之和最小

    P1828 香甜的黄油 Sweet Butter 闲来无事 写了三种最短路(那个Floyed是不过的) 题目描述 农夫John发现做出全威斯康辛州最甜的黄油的方法:糖.把糖放在一片牧场上,他知道N(1 ...

  5. P1828 [USACO3.2]香甜的黄油 Sweet Butter

    题目描述 农夫$John$发现做出全威斯康辛州最甜的黄油的方法:糖.把糖放在一片牧场上,他知道$N(1\leqslant N\leqslant 500)$只奶牛会过来舔它,这样就能做出能卖好价钱的超甜 ...

  6. 【USACO 3.2】Sweet Butter(最短路)

    题意 一个联通图里给定若干个点,求他们到某点距离之和的最小值. 题解 枚举到的某点,然后优先队列优化的dijkstra求最短路,把给定的点到其的最短路加起来,更新最小值.复杂度是\(O(NElogE) ...

  7. USACO Section 3.2: Sweet Butter

    这题我自己是用邻接矩阵+dijskstra方法来求的,第九个例子TLE.网上看了别人的代码,是用邻接表+BFS来完成. 这里可以学到两个小技巧,邻接表的表示方法和INT_MAX的表示方法. /* ID ...

  8. USACO Section 3.2 香甜的黄油 Sweet Butter

    本题是多源最短路问题 但使用弗洛伊德算法会超时 而因为边数目比较少 所以用队列优化后的迪杰斯特拉算法可以通过 #include<iostream> #include<cstring& ...

  9. [最短路]P1828 香甜的黄油 Sweet Butter

    题目描述 农夫John发现做出全威斯康辛州最甜的黄油的方法:糖.把糖放在一片牧场上,他知道N(1<=N<=500)只奶牛会过来舔它,这样就能做出能卖好价钱的超甜黄油.当然,他将付出额外的费 ...

随机推荐

  1. python---基础知识回顾(二)(闭包函数和装饰器)

    一.闭包函数: 闭包函数: 1.在一个外函数中定义了一个内函数 2.内函数里运用了外函数的临时变量,而不是全局变量 3.并且外函数的返回值是内函数的引用.(函数名,内存块地址,函数名指针..) 正确形 ...

  2. 对 JavaScript 下 namespace 功能的简单分析

    前些天在剥离 百度随心听 的播放器引擎时,看到了一个namespace方法,觉得新奇,当然只是对于我自己而言,我入门js不久,经验尚浅.之前看到网易还是新浪还是什么什么网站来着,也是用类似这种东西的, ...

  3. [转载]AngularJS之Factory vs Service vs Provider

    http://www.oschina.net/translate/angularjs-factory-vs-service-vs-provider http://tylermcginnis.com/a ...

  4. Oracle 查看锁表进程_杀掉锁表进程 [转]

    查看锁表进程SQL语句1: select sess.sid, sess.serial#, lo.oracle_username, lo.os_user_name, ao.object_name, lo ...

  5. Javascript中与Scroll有关的方法

    这块确实太乱了,被兼容搞的简直快要晕死,默默地总结下... 与scroll相关的方法 4个window对象下:scrollX.scrollY.scrollTo.scroll(作用和scrollTo一样 ...

  6. 如何生成能在没有安装opencv库及vs2010环境的电脑上运行的exe文件

    项目基本算法已经完成,甲方需要一个可以运行的demo.目前,程序能在自己的电脑上正常运行.移植到其他win7系统上,运行失败. 寻找各种解决办法,baidu找到两个办法: 1.使用静态链接的方法,这种 ...

  7. LINUX下 USB转串口 【转】

    转自:http://blog.163.com/smilexiao_11015461/blog/static/2122052182012102410399459/ 1.将设备u口插入pc2.输入#lsm ...

  8. appium-Could not obtain screenshot: [object Object]

    原因 App页面已经被禁止截屏,禁用用户截屏的代码如下: getWindow().addFlags(WindowManager.LayoutParams.FLAG_SECURE); setConten ...

  9. Ibatis.Net 表连接查询学习(五)

    IBatis.Net之多表查询 一.定制实际对应类的方式 首先配置多表的测试数据库,在之前Person表中增加一列"CountryId",新建一张Country表,两张表关系如下: ...

  10. linux下安装redis及其中遇到的问题的解决方法

    1.将下载好的压缩包放到/usr/local目录下# tar xzf redis-3.0.2.tar.gz # cd redis-3.0.2 # make 提示错误 make: cc: Command ...