考虑min-max容斥

\(E[max(S)] = \sum \limits_{T \subset S} min(T)\)

\(min(T)\)是可以被表示出来

即所有与\(T\)有交集的数的概率的和的倒数

通过转化一下,可以考虑求所有与\(T\)没有交集的数的概率和

即求\(T\)的补集的子集的概率和

用FMT随意做下吧...

注意:概率为1的时候需要特判

复杂度\(O(2^n * n)\)


#include <cstdio>
#include <vector>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; #define de double
#define ri register int
#define rep(io, st, ed) for(ri io = st; io <= ed; io ++)
#define drep(io, ed, st) for(ri io = ed; io >= st; io --) const int sid = (1 << 20) + 25; int n, show;
de Max, sub[sid]; int main() {
scanf("%d", &n);
rep(i, 0, (1 << n) - 1) {
scanf("%lf", &sub[i]);
show |= i * (sub[i] > 1e-8);
}
if(show != (1 << n) - 1) { puts("INF"); return 0; } rep(i, 1, n) rep(S, 0, (1 << n) - 1)
if(!(S & (1 << i - 1)))
sub[S ^ (1 << i - 1)] += sub[S]; int T = (1 << n) - 1;
rep(S, 1, (1 << n) - 1) { // no 0
if(__builtin_popcount(S) & 1) Max += 1.0 / (1.0 - sub[T ^ S]);
else Max -= 1.0 / (1.0 - sub[T ^ S]);
}
printf("%.12lf\n", Max);
return 0;
}

luoguP3175 [HAOI2015]按位或 min-max容斥 + 高维前缀和的更多相关文章

  1. BZOJ4036:按位或 (min_max容斥&amp;高维前缀和)

    Description 刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数字,与你手上的数字进行或(c++,c的|,pascal 的or)操作.选择数字i的概率是p[i].保证0&l ...

  2. [luogu 3175] [HAOI2015]按位或(min-max容斥+高维前缀和)

    [luogu 3175] [HAOI2015]按位或 题面 刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数字,与你手上的数字进行按位或运算.问期望多少秒后,你手上的数字变成2^n ...

  3. [HAOI2015]按位或(min-max容斥,FWT,FMT)

    题目链接:洛谷 题目大意:给定正整数 $n$.一开始有一个数字 $0$,然后每一秒,都有 $p_i$ 的概率获得 $i$ 这个数 $(0\le i< 2^n)$.一秒恰好会获得一个数.每获得一个 ...

  4. BZOJ4036 [HAOI2015]按位或 【minmax容斥 + 期望 + FWT】

    题目链接 BZOJ4036 题解 好套路的题啊,,, 我们要求的,实际上是一个集合\(n\)个\(1\)中最晚出现的\(1\)的期望时间 显然\(minmax\)容斥 \[E(max\{S\}) = ...

  5. bzoj 4036: [HAOI2015]按位或【min-max容斥+FWT】

    其实也不是FWT--我也不知道刷FWT专题问什么会刷出来这个东西 这是min-max容斥讲解:https://www.zybuluo.com/ysner/note/1248287 总之就是设min(s ...

  6. Codeforces.449D.Jzzhu and Numbers(容斥 高维前缀和)

    题目链接 \(Description\) 给定\(n\)个正整数\(a_i\).求有多少个子序列\(a_{i_1},a_{i_2},...,a_{i_k}\),满足\(a_{i_1},a_{i_2}, ...

  7. 【BZOJ4036】按位或(Min-Max容斥,FWT)

    [BZOJ4036]按位或(Min-Max容斥,FWT) 题面 BZOJ 洛谷 题解 很明显直接套用\(min-max\)容斥. 设\(E(max\{S\})\)表示\(S\)中最晚出现元素出现时间的 ...

  8. [Hdu-6053] TrickGCD[容斥,前缀和]

    Online Judge:Hdu6053 Label:容斥,前缀和 题面: 题目描述 给你一个长度为\(N\)的序列A,现在让你构造一个长度同样为\(N\)的序列B,并满足如下条件,问有多少种方案数? ...

  9. min-max 容斥

    $\min - \max$ 容斥 Part 1 对于简单的$\min - \max$容斥有一般形式,表达为:$\max(S)=\sum\limits_{T\subseteq S}(-1)^{|T|-1 ...

随机推荐

  1. NGUI Font

    ---------------------------------------------------------------------------------------------------- ...

  2. 掌握 Ajax,第 2 部分: 使用 JavaScript 和 Ajax 发出异步请求

    转http://www.ibm.com/developerworks/cn/xml/wa-ajaxintro2/ 掌握 Ajax,第 2 部分: 使用 JavaScript 和 Ajax 发出异步请求 ...

  3. Velocity语法大全

    1\ 参考地址:http://www.cnblogs.com/codingsilence/archive/2011/03/29/2146580.html

  4. speex 回声消除的用法

    speex 回声消除的用法 分类: speex AEC 回声消除 2012-11-13 11:24 1336人阅读 评论(0) 收藏 举报 speex的回声消息 就是speex_echo_cancel ...

  5. 谈谈git/github

    先说git/github操作 ->关于git/github操作的好文章已经非常多,如: github使用指南 廖雪峰的git教程 本文的目的在于,积累自己平时相关的操作和想法,记录下来,形成自己 ...

  6. Python复习笔记(七)线程和进程

    1. 多任务 并行:真的多任务 并发:假的多任务 2. 多任务-线程 Python的 Thread模块是比较底层的模块,Python的 Threading模块 是对Thread做了一些包装,可以更加方 ...

  7. Docker(五):Docker 三剑客之 Docker Machine

    上篇文章Docker(四):Docker 三剑客之 Docker Compose介绍了 Docker Compose,这篇文章我们来了解 Docker Machine . Docker Machine ...

  8. 当Windows Phone遇到Windows 8

    三年前,Windows Phone系统的发布表示了微软夺回移动市场的决心.一年前,Windows 8的发布,昭示着Windows Phone系统取得的成功——扁平化图标风格.动态磁贴.SkyDrive ...

  9. D17——C语言基础学PYTHON

    C语言基础学习PYTHON——基础学习D17 20181014内容纲要: 1.jQuery介绍 2.jQuery功能介绍 (1)jQuery的引入方式 (2)选择器 (3)筛选 (4)文本操作 (5) ...

  10. strncmp用法说明

    函数原型 int strcmp(char *str1,char * str2,int n) 功能 比较字符串str1和str2的前n个字符. 头文件 #include <string.h> ...