CS229 6.1 Neurons Networks Representation
面对复杂的非线性可分的样本是,使用浅层分类器如Logistic等需要对样本进行复杂的映射,使得样本在映射后的空间是线性可分的,但在原始空间,分类边界可能是复杂的曲线。比如下图的样本只是在2维情形下的示例,假设有100维度,即特征数目是100,若使用logistic来做分类,对于这种线性不可分的情形,要对特征进行各种形式的组合映射,然后用映射后扩充的特征进行分类,可能会增加大量的参数,计算复杂性可想而知,而且可能会造成严重的over-fitting,可见logistic分类的局限性,下面引入NN。

如下是一个单层网络的示意图,类似于感知机分类器,下图有三个feature,有一个bias unit,其值始终为1,对应的参数为ϴ0 ϴ1 ϴ2 ϴ3,最后其线性组合做一个sigmod映射来得到最终的结果

下图为含有隐藏层的Neurons Networds,ai(j)中的j表示层数,i表示第 i 个unit,ϴ(j)示层j到j+1的参数矩阵ϴij表示前一层的单元j到本层单元i的参数,本示例中ϴ(1)为3*4的矩阵

更简洁的表示方法,把上一层的输入表示为z(i), 下图中的z(2) 分别表示上一层的activation,这三个值乘以对应的参数,然后做一个sigmod映射之后又可以当下一层的输入,最终我们的Hϴ(x)=g(ϴ(2)*a(2)),可见最后我们不是对初始特征x1 x2 x3做的运算,这可以理解为 Neurons Networks会自动组合特征,从而达到更好的效果。

最后只得注意的是,对于非线性可分的情况,NN也可以进行分类,比如XOR(异或)的情况:

CS229 6.1 Neurons Networks Representation的更多相关文章
- (六) 6.1 Neurons Networks Representation
面对复杂的非线性可分的样本是,使用浅层分类器如Logistic等需要对样本进行复杂的映射,使得样本在映射后的空间是线性可分的,但在原始空间,分类边界可能是复杂的曲线.比如下图的样本只是在2维情形下的示 ...
- CS229 6.10 Neurons Networks implements of softmax regression
softmax可以看做只有输入和输出的Neurons Networks,如下图: 其参数数量为k*(n+1) ,但在本实现中没有加入截距项,所以参数为k*n的矩阵. 对损失函数J(θ)的形式有: 算法 ...
- CS229 6.15 Neurons Networks Deep Belief Networks
Hintion老爷子在06年的science上的论文里阐述了 RBMs 可以堆叠起来并且通过逐层贪婪的方式来训练,这种网络被称作Deep Belife Networks(DBN),DBN是一种可以学习 ...
- CS229 6.11 Neurons Networks implements of self-taught learning
在machine learning领域,更多的数据往往强于更优秀的算法,然而现实中的情况是一般人无法获取大量的已标注数据,这时候可以通过无监督方法获取大量的未标注数据,自学习( self-taught ...
- CS229 6.8 Neurons Networks implements of PCA ZCA and whitening
PCA 给定一组二维数据,每列十一组样本,共45个样本点 -6.7644914e-01 -6.3089308e-01 -4.8915202e-01 ... -4.4722050e-01 -7.4 ...
- CS229 6.2 Neurons Networks Backpropagation Algorithm
今天得主题是BP算法.大规模的神经网络可以使用batch gradient descent算法求解,也可以使用 stochastic gradient descent 算法,求解的关键问题在于求得每层 ...
- CS229 6.17 Neurons Networks convolutional neural network(cnn)
之前所讲的图像处理都是小 patchs ,比如28*28或者36*36之类,考虑如下情形,对于一副1000*1000的图像,即106,当隐层也有106节点时,那么W(1)的数量将达到1012级别,为了 ...
- CS229 6.16 Neurons Networks linear decoders and its implements
Sparse AutoEncoder是一个三层结构的网络,分别为输入输出与隐层,前边自编码器的描述可知,神经网络中的神经元都采用相同的激励函数,Linear Decoders 修改了自编码器的定义,对 ...
- CS229 6.14 Neurons Networks Restricted Boltzmann Machines
1.RBM简介 受限玻尔兹曼机(Restricted Boltzmann Machines,RBM)最早由hinton提出,是一种无监督学习方法,即对于给定数据,找到最大程度拟合这组数据的参数.RBM ...
随机推荐
- [转]C# FTP操作类
转自 http://www.cnblogs.com/Liyuting/p/7084718.html using System; using System.Collections.Generic; ...
- asyn proposals
Objective:
- tensorflow学习笔记
常量的四则运算 import tensorflow as tf data1 = tf.constant(2) data2 = tf.constant(10) dataAdd=tf.add(data1, ...
- 获取TypeError:__init __()缺少1个需要的位置参数:'on_delete'当试图添加父表后面的子表
解决办法:https://stackoverflow.com/questions/44026548/getting-typeerror-init-missing-1-required-position ...
- maven默认本地仓库
本地仓库是远程仓库的一个缓冲和子集,当你构建Maven项目的时候,首先会从本地仓库查找资源,如果没有,那么Maven会从远程仓库下载到你本地仓库.这样在你下次使用的时候就不需要从远程下载了.如果你所需 ...
- Anaconda 安装 Python 库(MySQLdb)的方法-(转)
安装python库的过程中,最重要的地方就是版本需要兼容.其中操作系统为64位,Python为2.X 64位,下载安装文件的时候也要注意版本匹配.其中文件名中包含的cp27表示CPython 2.7版 ...
- bzoj 2553 [BeiJing2011]禁忌——AC自动机+概率DP+矩阵
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2553 看了题解才会…… 首先,给定一个串,最好的划分方式是按禁忌串出现的右端点排序,遇到能填 ...
- 如何使用Hanlp加载大字典
问题 因为需要加载一个 近 1G 的字典到Hanlp中,一开始使用了CustomDictionay.add() 方法来一条条的加载,果然到了中间,维护DoubleArraTre 的成本太高,添 ...
- HanLP的自定义词典使用方式与注意事项介绍
[环境]python 2.7 方法一:使用pyhanlp,具体方法如下: pip install pyhanlp # 安装pyhanlp 进入python安装包路径,如 /usr/lib/pytho ...
- 本地开发spark代码上传spark集群服务并运行
打包 :右击.export.Java .jar File 把TestSpark.jar包上传到spark集群服务器的 spark_home下的myApp下: 提交spark任务: cd /usr/lo ...