堆排序是一种原地排序算法,不使用额外的数组空间,运行时间为O(nlgn)。本篇文章我们来介绍一下堆排序的实现过程。

要了解堆排序。我们首先来了解一个概念,全然二叉树。

堆是一种全然二叉树或者近似全然二叉树。

什么是全然二叉树呢?百度百科上给出定义:全然二叉树:除最后一层外,每一层上的节点数均达到最大值;在最后一层上仅仅缺少右边的若干结点。以下用两个小图来说明全然二叉树与非全然二叉树。

(图片来自百度,大家能够忽略水印…..)



二叉堆满足二个特性:

1.父结点的键值总是大于或等于(小于或等于)不论什么一个子节点的键值。

2.每一个结点的左子树和右子树都是一个二叉堆(都是最大堆或最小堆)。

当父结点的键值总是大于或等于不论什么一个子节点的键值时为最大堆。

当父结点的键值总是小于或等于不论什么一个子节点的键值时为最小堆。

堆排序也是基于分治思想的。主要有以下三步:

  1. 初始化,从第一个非叶结点開始遍历,使以其为根的树为大根堆;
  2. 交换堆顶元素与堆尾元素。筛选出最大的值。调整新的堆为大根堆。
  3. 反复2,每次筛选出堆中的最大元素,堆排序完毕。

    本次。我们举例的数组例如以下:数组长度length=10。



    相应的堆结构:

从第一个非叶结点開始。建初堆

void BUILD_MAX_HEAP(int A[],int length)
{
int i;
for(i=((length/2)-1);i>=0;i--)//length/2-1,为第一个非叶结点
MAX_HEAPIFY(A,i); }

保持堆的性质

void MAX_HEAPIFY(int A[],int i)
{
int l,r,largest,middle;
l=LEFT(i);
r=RIGHT(i);
if(l<heap_size && A[l]>A[i])
largest = l;
else
largest= i;
if(r<heap_size && A[r]>A[largest])
largest = r;
if(largest!=i)
{
middle=A[largest];
A[largest]=A[i];
A[i]=middle;
MAX_HEAPIFY(A,largest); }
}

堆排序的详细实现

void heap_sort(int A[],int length)
{
BUILD_MAX_HEAP(A,length); int i,middle;
for(i=length-1;i>0;i--)
{
middle=A[0];
A[0]=A[i];
A[i]=middle;
heap_size--;
MAX_HEAPIFY(A,0); }
}

以下为程序运行的简单的过程。分析不够全面,可是足以说明问题。

1.分析步骤4中的for循环,BUILD_MAX_HEAP(A,length);即建初堆的过程。i从length/2-1循环到0,即从4循环到0。(4为第一个非叶结点)

(1)i=4。MAX_HEAPIFY(A,i)。MAX_HEAPIFY(A,4);

<1>计算左叶子节点的编号l=LEFT(i)=(2*i+1)=9; 计算右叶子节点的编号r=RIGHT(i)=(2*i+2)=10;

注:此处计算左右叶子节点的编号时,要注意数组是从0还是从1開始的。若从0開始。左叶子节点为(2*i+1),右叶子节点为(2*i+2)。若从1開始,左叶子为2*i;右叶子为2*i+1

<2>推断左右叶子节点与根节点的大小,将当中节点编号的较大值赋值给largest;

heap_size为堆的大小,開始heap_size=length=9

if(l<heap_size && A[l]>A[i])
largest = l;
else
largest= i;
if(r<heap_size && A[r]>A[largest])
largest = r;

当i=4时,largest=4

<3>推断largest是否等于根节点,若不为根节点。说明当中左叶节点或者右叶节点比根节点的值大,则此时交换根节点与largest节点的值。

if(largest!=i)
{
middle=A[largest];
A[largest]=A[i];
A[i]=middle;
MAX_HEAPIFY(A,largest); }

由于此处largest=i,因此不运行这一步,运行下一次for循环

(2)i=3;MAX_HEAPIFY(A,i);MAX_HEAPIFY(A,3);

<1>计算左叶子节点的编号l=LEFT(i)=(2*i+1)=7; 计算右叶子节点的编号r=RIGHT(i)=(2*i+2)=8;

<2>推断左右叶子节点与根节点的大小。将当中节点编号的较大值赋值给largest;

largest=7

<3>推断largest是否等于根节点,若不为根节点。说明当中左叶节点或者右叶节点比根节点的值大,则此时交换根节点与largest节点的值。

<4>运行MAX_HEAPIFY(A,largest);MAX_HEAPIFY(A,7);将以largest为根的树调整为大根堆

(3)i=2;步骤与2中的<1>~<4>同样。largest=6,发生交换。

此处不再分析。

(4)i=1;时分析过程參考步骤与2中的<1>~<4>。

运行后的结果

(5)i=0;

2.步骤6中的for循环分析。即筛选出最大的值。缩小堆的规模,保持堆的性质的过程。

length=10,i从length-1到1。即从9循环到1

for(i=length-1;i>0;i--)
{
middle=A[0];
A[0]=A[i];
A[i]=middle;
heap_size--;
MAX_HEAPIFY(A,0); }

(1)i=9;交换A[i]与A[0]。此时i是堆的最末的那个元素,A[0]是堆顶元素,即最大的元素,将最大元素交换到堆尾。而且堆的规模缩小一个,即此时待又一次排序的堆是红框框起来的部分,此时运行MAX_HEAPIFY(A,0);上面已经分析,此处不再赘述。

(2)i=8;交换A[i]与A[0];heap_size–;MAX_HEAPIFY(A,0);

(3)以下的循环不再举例,我们能够看出。每次都筛选出当前堆中最大的元素。

3.最后给出程序运行的截图:

程序源码下载地址:堆排序实现代码

算法分析之——heap-sort堆排序的更多相关文章

  1. [Unity][Heap sort]用Unity动态演示堆排序的过程(How Heap Sort Works)

    [Unity][Heap sort]用Unity动态演示堆排序的过程 How Heap Sort Works 最近做了一个用Unity3D动态演示堆排序过程的程序. I've made this ap ...

  2. 算法 Heap sort

    // ------------------------------------------------------------------------------------------------- ...

  3. 堆排序 Heap Sort

    堆排序虽然叫heap sort,但是和内存上的那个heap并没有实际关系.算法上,堆排序一般使用数组的形式来实现,即binary heap. 我们可以将堆排序所使用的堆int[] heap视为一个完全 ...

  4. 数据结构 - 堆排序(heap sort) 具体解释 及 代码(C++)

    堆排序(heap sort) 具体解释 及 代码(C++) 本文地址: http://blog.csdn.net/caroline_wendy 堆排序包括两个步骤: 第一步: 是建立大顶堆(从大到小排 ...

  5. 堆排序(Heap Sort)的C语言实现

    堆排序(Heap Sort)具体步骤为 将无序序列建成大顶堆(小顶堆):从最后一个非叶子节点开始通过堆调整HeapAdjust()变成小顶堆或大顶堆 将顶部元素与堆尾数组交换,此是末尾元素就是最大值, ...

  6. PAT A1098 Insertion or Heap Sort (25 分)——堆排序和插入排序,未完待续。。

    According to Wikipedia: Insertion sort iterates, consuming one input element each repetition, and gr ...

  7. PAT甲题题解1098. Insertion or Heap Sort (25)-(插入排序和堆排序)

    题目就是给两个序列,第一个是排序前的,第二个是排序中的,判断它是采用插入排序还是堆排序,并且输出下一次操作后的序列. 插入排序的特点就是,前面是从小到大排列的,后面就与原序列相同. 堆排序的特点就是, ...

  8. 算法----堆排序(heap sort)

    堆排序是利用堆进行排序的高效算法,其能实现O(NlogN)的排序时间复杂度,详细算法分析能够点击堆排序算法时间复杂度分析. 算法实现: 调整堆: void sort::sink(int* a, con ...

  9. PAT甲级——1098 Insertion or Heap Sort (插入排序、堆排序)

    本文同步发布在CSDN:https://blog.csdn.net/weixin_44385565/article/details/90941941 1098 Insertion or Heap So ...

  10. Python入门篇-数据结构堆排序Heap Sort

    Python入门篇-数据结构堆排序Heap Sort 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.堆Heap 堆是一个完全二叉树 每个非叶子结点都要大于或者等于其左右孩子结点 ...

随机推荐

  1. linux下时间操作1

    本文是对我之前写的文章:C++时间操作 的更深入补充.之前那个文章就是一个快速入门的东西,后面力图把一些更深入的细节补充完整. 时间分类的基本介绍 在介绍一些时间相关的操作函数之前,先来介绍一下lin ...

  2. js上传控件 plupload 使用记录

    最近一个项目需要使用一个上传控件进行多图片上传,给用户更好的体验,找到了plupload,用了一下感觉还是不错的, 1.从官网上  可以获得例子 ,我集成到了jsp,如下: <%@ page l ...

  3. linux学习笔记32---命令ping和telnet

    Linux系统的ping命令是常用的网络命令,它通常用来测试与目标主机的连通性,我们经常会说“ping一下某机器,看是不是开着”.不能打开网页时会说“你先ping网关地址192.168.1.1试试”. ...

  4. docker构建测试环境

    构建测试环境首先要根据自己的需求,构建出适合自己项目的image,有了自己的image,就可以快速的搭建出来一套测试环境了. 下边就说一下构建image的两种方式. 1.DOCKFILE创建文件夹:m ...

  5. ORACLE完整安装过程

    安装 oracle, 主要是, 先确认系统资源, 再安装 oracle 软件, 最后按照 oracle 数据库 如果是使用 dbca 来安装数据库, 那么不需要自己创建文件夹.( 用来安装oracle ...

  6. 路由器port触发与转发---Port Forwarding &amp; Port Triggering

    What is Port Triggering? If you have not read my explanation of port forwarding do so now. You can f ...

  7. win7 激活相关

    命令 slui 1 slui 2 slui 3 slui 4 slmgr.vbs 需打开的服务 需要开启software protection和 SPP Notification service这两个 ...

  8. PHP 程序员面试常问的问题

    1. Include 与 require的区别,require和require_once的效率哪个高? Php在遇到include时就解释一次,如果页面中出现10次include,php就解释10次, ...

  9. redis 命令行 操作

    redis目前提供四种数据类型:string,list,set及zset(sorted set). * string是最简单的类型,你可以理解成与Memcached一模一个的类型,一个key对应一个v ...

  10. hbase0.96.0单机模式安装(win7 无需cygwin)

        之前折腾了几天,想让hbase的单机模式在cygwin上跑起来,都不成功.正当我气馁之时,我无意中发现hbase0.96.0的bin和conf目录下有一些扩展名为cmd的文件.这难道是给win ...