Python 服务器端表单验证插件
Python格式验证库 Cerberus
Cerberus是一个验证Python对象、MongoDB格式的库,
安装(稳定版本)
http://docs.python-cerberus.org/en/stable/install.html
pip install cerberus
基本用法
1⃣️定义基本格式
2⃣️生成Validator类的实例v
3⃣️定义要验证的dictionary(Python字典)
4⃣️实例v调用validator()函数(返回boolean值)
>>> schema = {'name': {'type': 'string'}}
>>> v = Validator(schema)
>>> document = {'name': 'john doe'}
>>> v.validate(document)
True
也可以这样:
>>> v = Validator()
>>> v.validate(document, schema)
True
在version 0.4.1之后,可以这样:
>>> document = {'name': 'john doe'}
>>> v(document)
True
Validator执行时不会抛出异常或因为异常发生而停止运行,整个函数会执行完毕。也就是说验证成功就返回true,否则返回false。可以通过调用errors()函数来获取相关的信息。
>>> schema = {'name': {'type': 'string'}, 'age': {'type': 'integer', 'min': 10}}
>>> document = {'name': 1337, 'age': 5}
>>> v.validate(document, schema)
False
>>> v.errors
{'age': 'min value is 10', 'name': 'must be of string type'}
验证规则(验证语法中的一些参数规范):
type:
type可有以下取值:
* string
* integer
* float
* number (integer or float)
* boolean
* datetime
* dict (formally collections.mapping)
* list (formally collections.sequence, excluding strings)
* set
可以定义多个取值范围
>>> v = Validator({'quotes': {'type': ['string', 'list']}})
>>> v.validate({'quotes': 'Hello world!'})
True
>>> v.validate({'quotes': ['Do not disturb my circles!', 'Heureka!']})
True
>>> v = Validator({'quotes': {'type': ['string', 'list'], 'schema': {'type': 'string'}}})
>>> v.validate({'quotes': 'Hello world!'})
True
>>> v.validate({'quotes': [1, 'Heureka!']})
False
>>> v.errors
{'quotes': {0: 'must be of string type'}}
required:
1⃣️如果设置了'required': True那么这个键值对是必须的,如果没有,那么将返回false
2⃣️可在validate()函数调用时设置update=True,来忽略require规则
3⃣️对于string类型的规定,“”空字符串符合required规则
>>> schema = {'name': {'required': True, 'type': 'string'}, 'age': {'type': 'integer'}}
>>> v = Validator(schema)
>>> document = {'age': 10}
>>> v.validate(document)
False
>>> v.errors
{'name': 'must be of string type'}
>>> v.validate(document, update=True)
True
readonly:
nullable:
设置为true,则值可有两种属性 (**和None)
>>> schema = {'a_nullable_integer': {'nullable': True, 'type': 'integer'}, 'an_integer': {'type': 'integer'}}
>>> v = Validator(schema)
>>> v.validate({'a_nullable_integer': 3})
True
>>> v.validate({'a_nullable_integer': None})
True
>>> v.validate({'an_integer': 3})
True
>>> v.validate({'an_integer': None})
False
>>> v.errors
{'an_integer': 'must be of integer type'}
minlength, maxlength:
只针对于string和list
>>> schema = {'name': {'type': 'string', 'maxlength': 10}}
min, max:
integer,float和number
>>> schema = {'name': {'type': 'string'}, 'age': {'type': 'integer', 'min': 10}}
>>> document = {'name': 1337, 'age': 5}
>>> v.validate(document, schema)
False
>>> v.errors
{'age': 'min value is 10', 'name': 'must be of string type'}
allowed:
string , list and int
规定取值范围:
>>> schema = {'role': {'type': 'list', 'allowed': ['agent', 'client', 'supplier']}}
>>> v = Validator(schema)
>>> v.validate({'role': ['agent', 'supplier']})
True
>>> v.validate({'role': ['intern']})
False
>>> v.errors
{'role': "unallowed values ['intern']"}
>>> schema = {'role': {'type': 'string', 'allowed': ['agent', 'client', 'supplier']}}
>>> v = Validator(schema)
>>> v.validate({'role': 'supplier'})
True
>>> v.validate({'role': 'intern'})
False
>>> v.errors
{'role': 'unallowed value intern'}
>>> schema = {'a_restricted_integer': {'type': 'integer', 'allowed': [-1, 0, 1]}}
>>> v = Validator(schema)
>>> v.validate({'a_restricted_integer': -1})
True
>>> v.validate({'a_restricted_integer': 2})
False
>>> v.errors
{'a_restricted_unteger': 'unallowed value 2'}
empty:
只适用于string
默认为true(字符串可为“”)
>>> schema = {'name': {'type': 'string', 'empty': False}}
>>> document = {'name': ''}
>>> v.validate(document, schema)
False
>>> v.errors
{'name': 'empty values not allowed'}
schema (dict):
字典dict内的键值对规则 (子规则)
>>> schema = {'a_dict': {'type': 'dict', 'schema': {'address': {'type': 'string'}, 'city': {'type': 'string', 'required': True}}}}
>>> document = {'a_dict': {'address': 'my address', 'city': 'my town'}}
>>> v.validate(document, schema)
True
schema (list):
列表list内的键值对规则 (子规则)
>>> schema = {'a_list': {'type': 'list', 'schema': {'type': 'integer'}}}
>>> document = {'a_list': [3, 4, 5]}
>>> v.validate(document, schema)
True
valueschema:
规定了dict内所有值的规则?
>>> schema = {'numbers': {'type': 'dict', 'valueschema': {'type': 'integer', min: 10}}}
>>> document = {'numbers': {'an integer': 10, 'another integer': 100}}
>>> v.validate(document, schema)
True
>>> document = {'numbers': {'an integer': 9}}
>>> v.validate(document, schema)
False
>>> v.errors
{'numbers': {'an integer': 'min value is 10'}}
propertyschema:
>>> schema = 'a_dict': {'type': 'dict', 'propertyschema': {'type': 'string', 'regex': '[a-z]+'}}
>>> document = {'a_dict': {'key': 'value'}}
>>> v.validate(document, schema)
True
>>> document = {'a_dict': {'KEY': 'value'}}
>>> v.validate(document, schema)
False
regex:
正则表达式
>>> schema = {'email': {'type': 'string', 'regex': '^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$'}}
>>> document = {'email': 'john@example.com'}
>>> v.validate(document, schema)
True
>>> document = {'email': 'john_at_example_dot_com'}
>>> v.validate(document, schema)
False
>>> v.errors
{'email': 'value does not match regex "^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$"}
dependencies:
依赖链
>>> schema = {'field1': {'required': False}, 'field2': {'required': False, 'dependencies': ['field1']}}
>>> document = {'field1': 7}
>>> v.validate(document, schema)
True
>>> document = {'field2': 7}
>>> v.validate(document, schema)
False
>>> v.errors
{'field2': 'field "field1" is required'}
>>> schema = {'field1': {'required': False}, 'field2': {'required': True, 'dependencies': {'field1': ['one', 'two']}}}
>>> document = {'field1': 'one', 'field2': 7}
>>> v.validate(document, schema)
True
>>> document = {'field1': 'three', 'field2': 7}
False
>>> v.errors
{'field2': "field 'field1' is required with values: ['one', 'two']"}
>>> # same as using a dependencies list
>>> document = {'field2': 7}
>>> v.validate(document, schema)
{'field2': "field 'field1' is required"}
>>> # one can also pass a single dependency value
>>> schema = {'field1': {'required': False}, 'field2': {'dependencies': {'field1': 'one'}}}
>>> document = {'field1': 'one', 'field2': 7}
>>> v.validate(document, schema)
True
>>> document = {'field1': 'two', 'field2': 7}
False
>>> v.errors
{'field2': "field 'field1' is required with values: one"}
anyof、allof、noneof、oneof
>>> schema = {'prop1':
... {'type': 'number',
... 'anyof':
... [{'min': 0, 'max': 10}, {'min': 100, 'max': 110}]}}
>>> doc = {'prop1': 5}
>>> v.validate(document, schema)
True
>>> doc = {'prop1': 105}
>>> v.validate(document, schema)
True
>>> doc = {'prop1': 55}
>>> v.validate(document, schema)
False
>>> print v.errors
{'prop1': {'anyof': 'no definitions validated', 'definition 1': 'min value is 100', 'definition 0': 'max value is 10'}}
Allowing the Unknown:
>>> schema = {'name': {'type': 'string', 'maxlength': 10}}
>>> v.validate({'name': 'john', 'sex': 'M'})
False
>>> v.errors
{'sex': 'unknown field'}
>>> v = Validator(schema={})
>>> v.allow_unknown = True
>>> v.validate({'name': 'john', 'sex': 'M'})
True
>>> v = Validator(schema={})
>>> v.allow_unknown = {'type': 'string'}
>>> v.validate({'an_unknown_field': 'john'})
True
>>> v.validate({'an_unknown_field': 1})
False
>>> v.errors
{'an_unknown_field': 'must be of string type'}
>>> v = Validator(schema=schema, allow_unknown=True)
>>> v.validate({'name': 'john', 'sex': 'M'})
True
>>> # by default allow_unknown is False for the whole document.
>>> v = Validator()
>>> v.allow_unknown
False
>>> # we can switch it on (or set it to a validation schema) for individual subdocuments
>>> schema = {
... 'name': {'type': 'string'},
... 'a_dict': {
... 'type': 'dict',
... 'allow_unknown': True,
... 'schema': {
... 'address': {'type': 'string'}
... }
... }
... }
>>> v.validate({'name': 'john', 'a_dict':{'an_unknown_field': 'is allowed'}}, schema)
True
>>> # this fails as allow_unknown is still False for the parent document.
>>> v.validate({'name': 'john', 'an_unknown_field': 'is not allowed', 'a_dict':{'an_unknown_field': 'is allowed'}}, schema)
False
>>> v.errors
{'an_unknown_field': 'unknown field'}
Type Coercion:
回调函数的值代替原值
>>> v = Validator({'amount': {'type': 'integer'}})
>>> v.validate({'amount': '1'})
False
>>> v = Validator({'amount': {'type': 'integer', 'coerce': int}})
>>> v.validate({'amount': '1'})
True
>>> v.document
{'amount': 1}
>>> to_bool = lambda v: v.lower() in ['true', '1']
>>> v = Validator({'flag': {'type': 'boolean', 'coerce': to_bool}})
>>> v.validate({'flag': 'true'})
True
>>> v.document
{'flag': True}
Validated Method:
v = Validator(schema)
valid_documents = [x for x in [v.validated(y) for y in documents] if x is not None]
Vanilla Python:
>>> import yaml
>>> schema_text = '''
...name:
... type: string
...age':
... type: integer
... min: 10
...'''
>>> schema = yaml.load(schema_text)
>>> document = {'name': 1337, 'age': 5}
>>> v.validate(document, schema)
False
>>> v.errors
{'age': 'min value is 10', 'name': 'must be of string type'}
参考来源:http://www.jianshu.com/p/ca852f679fcc
http://docs.python-cerberus.org/en/stable/index.html
Python 服务器端表单验证插件的更多相关文章
- jQuery学习之:Validation表单验证插件
http://polaris.blog.51cto.com/1146394/258781/ 最近由于公司决定使用AJAX + Struts2来重构项目,让我仔细研究一下这两个,然后集中给同事讲讲,让每 ...
- (转)强大的JQuery表单验证插件 FormValidator使用介绍
jQuery formValidator表单验证插件是客户端表单验证插件.在做B/S开发的时候,我们经常涉及到很多表单验证,例如新用户注册,填写个人资料,录入一些常规数据等等.在这之前,页面开发者(J ...
- 强大的JQuery表单验证插件 FormValidator使用介绍
jQuery formValidator表单验证插件是客户端表单验证插件. 在做B/S开发的时候,我们经常涉及到很多表单验证,例如新用户注册,填写个人资料,录入一些常规数据等等.在这之前,页面开发者( ...
- 10个强大的Javascript表单验证插件推荐
创建一个JavaScript表单验证插件,可以说是一个繁琐的过程,涉及到初期设计.开发与测试等等环节.实际上一个优秀的程序员不仅是技术高手,也应该是善假于外物的.本文介绍了10个不错的JavaScri ...
- nice-validator表单验证插件的简单使用
前言 前端表单校验是过滤无效数据.假数据.有毒数据的第一步,是数据安全的第一道关卡,虽然我们不能100%相信客户端提交的数据(真正的校验还得在服务端进行),但设置前端表单校验也是至关重要的,自己写逻辑 ...
- nice-validator表单验证插件
nice-validator表单验证插件的简单使用 前言 前端表单校验是过滤无效数据.假数据.有毒数据的第一步,是数据安全的第一道关卡,虽然我们不能100%相信客户端提交的数据(真正的校验还得在服务端 ...
- jquery validate表单验证插件-推荐
1 表单验证的准备工作 在开启长篇大论之前,首先将表单验证的效果展示给大家. 1.点击表单项,显示帮助提示 2.鼠标离开表单项时,开始校验元素 3.鼠标离开后的正确.错误提示及鼠标移入时的帮 ...
- 表单验证插件之jquery.validate.js
提到表单验证的插件,第一个想到的就是jquery.validate.js,所以小生想在这里稍微详细地说一下这款插件的具体使用方法,便于理解,我直接附上整段demo的代码(没怎么调样式,主要是看js): ...
- jquery validate表单验证插件
1 表单验证的准备工作 在开启长篇大论之前,首先将表单验证的效果展示给大家. 1.点击表单项,显示帮助提示 2.鼠标离开表单项时,开始校验元素 3.鼠标离开后的正确.错误提示及鼠标移入时的帮 ...
随机推荐
- 【若泽大数据实战第二天】Linux命令基础
Linux基本命令: 查看IP: ifconfig 或者 hostname -i(需要配置文件之后才可以使用) ipconfig(Windows) 关闭防火墙: Service iptables st ...
- 用原生JS写一个网页版的2048小游戏(兼容移动端)
这个游戏JS部分全都是用原生JS代码写的,加有少量的CSS3动画,并简单的兼容了一下移动端. 先看一下在线的demo:https://yuan-yiming.github.io/2048-online ...
- vi模式下的编辑、删除、保存和退出
vi + 文件名:进入 vi 模式 编辑模式:shift+: 退出编辑模式:Esc 退出编辑模式后可进行光标的上下左右移动(偶尔会出现ABCD,还不知道怎么解决,目前只能出来一个删除一个) 光标处:按 ...
- Spark 加载数据库mysql表中数据进行分析
1.工程maven依赖包 <properties> <spark_version>2.3.1</spark_version> <!-- elasticsear ...
- 第3章 Hadoop 2.x分布式集群搭建
目录 3.1 配置各节点SSH无密钥登录 1.将各节点的秘钥加入到同一个授权文件中 2.拷贝授权文件到各个节点 3.测试无秘钥登录 3.2 搭建Hadoop集群 1.上传Hadoop并解压 2.配置H ...
- Hive的DML操作
1. Load 在将数据加载到表中时,Hive 不会进行任何转换.加载操作是将数据文件移动到与 Hive表对应的位置的纯复制/移动操作. 语法结构: load data [local] inpath ...
- 理解Linux系统调用
目录 1.什么是系统调用 2.linux的系统调用 3.linux系统调用实现 1.什么是系统调用 系统调用,指的是操作系统提供给用户程序调用的一组特殊接口,用户程序可以根据这组接口获得操作系统内核的 ...
- 使用GlobalKey启动APP
按键输入有三种:system key 音量键 global key 按下启动某个APP user key ABCD... 给安卓应用程序定义一个广播接收者,写一个BroadcastReceiver ...
- 《TCP/IP详解 卷1:协议》第3章 IP:网际协议
3.1 引言 IP是TCP/IP协议族中最为核心的协议.所有的TCP.UDP.ICMP及IGMP数据都以IP数据报格式传输(见图1-4).许多刚开始接触TCP/IP的人对IP提供不可靠.无连接的数据报 ...
- POJ-2155:Matrix(二维树状数祖)
Matrix Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 31892 Accepted: 11594 Descript ...