【递推】【组合数】【容斥原理】UVA - 11806 - Cheerleaders
http://www.cnblogs.com/khbcsu/p/4245943.html
本题如果直接枚举的话难度很大并且会无从下手。那么我们是否可以采取逆向思考的方法来解决问题呢?我们可以用总的情况把不符合要求的减掉就行了。
首先我们如果不考虑任何约束条件,我们可以得出如下结论:

下载我们假定第一行不站拉拉队员的所有的站立方法有A种。最后一行不站拉拉队员的所有的方法有B种。第一列不站拉拉队员的所有的站立方法有C种。最后一列不站拉拉队员的站立方法有D种。
下面我们可以得出最后结果:

#include<cstdio>
using namespace std;
#define MOD 1000007
int C[510][510];
int T,n,m,K;
int main(){
// freopen("uva11806.in","r",stdin);
C[0][0]=1;
for(int i=1;i<=500;++i){
C[i][0]=C[i][i]=1;
for(int j=1;j<i;++j){
C[i][j]=(C[i-1][j]+C[i-1][j-1])%MOD;
}
}
scanf("%d",&T);
for(int i=1;i<=T;++i){
scanf("%d%d%d",&n,&m,&K);
int ans=C[n*m][K];
ans=(ans+MOD-C[n*(m-1)][K])%MOD;
ans=(ans+MOD-C[n*(m-1)][K])%MOD;
ans=(ans+MOD-C[(n-1)*m][K])%MOD;
ans=(ans+MOD-C[(n-1)*m][K])%MOD; ans=(ans+C[(n-1)*(m-1)][K])%MOD;
ans=(ans+C[(n-1)*(m-1)][K])%MOD;
ans=(ans+C[(n-2)*m][K])%MOD;
ans=(ans+C[(n-1)*(m-1)][K])%MOD;
ans=(ans+C[n*(m-2)][K])%MOD;
ans=(ans+C[(n-1)*(m-1)][K])%MOD; ans=(ans+MOD-C[(n-1)*(m-2)][K])%MOD;
ans=(ans+MOD-C[(n-1)*(m-2)][K])%MOD;
ans=(ans+MOD-C[(n-2)*(m-1)][K])%MOD;
ans=(ans+MOD-C[(n-2)*(m-1)][K])%MOD; ans=(ans+C[(n-2)*(m-2)][K])%MOD;
printf("Case %d: %d\n",i,ans);
}
return 0;
}
【递推】【组合数】【容斥原理】UVA - 11806 - Cheerleaders的更多相关文章
- UVA.11806 Cheerleaders (组合数学 容斥原理 二进制枚举)
UVA.11806 Cheerleaders (组合数学 容斥原理 二进制枚举) 题意分析 给出n*m的矩形格子,给出k个点,每个格子里面可以放一个点.现在要求格子的最外围一圈的每行每列,至少要放一个 ...
- uva 11806 Cheerleaders
// uva 11806 Cheerleaders // // 题目大意: // // 给你n * m的矩形格子,要求放k个相同的石子,使得矩形的第一行 // 第一列,最后一行,最后一列都必须有石子. ...
- 一种递推组合数前缀和的Trick
记录一下一种推组合数前缀和的方法 Trick 设\(\sum_{i = 0}^m C_n^i = S(n, m)\) \(S\)是可以递推的 \(S(n, m + 1) = S(n, m) + C_{ ...
- bzoj3398 [Usaco2009 Feb]Bullcow 牡牛和牝牛——递推 / 组合数
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3398 对于这种有点巧妙的递推还是总是没有思路... 设计一个状态 f[i] 表示第 i 位置 ...
- BZOJ2339[HNOI2011]卡农——递推+组合数
题目链接: [HNOI2011]卡农 题目要求从$S=\{1,2,3……n\}$中选出$m$个子集满足以下三个条件: 1.不能选空集 2.不能选相同的两个子集 3.每种元素出现次数必须为偶数次 我们考 ...
- UVa 11806 Cheerleaders (容斥原理+二进制表示状态)
In most professional sporting events, cheerleaders play a major role in entertaining the spectators. ...
- UVA 11806 Cheerleaders (组合+容斥原理)
自己写的代码: #include <iostream> #include <stdio.h> #include <string.h> /* 题意:相当于在一个m*n ...
- UVA 11806 Cheerleaders (容斥原理
1.题意描述 本题大致意思是讲:给定一个广场,把它分为M行N列的正方形小框.现在给定有K个拉拉队员,每一个拉拉队员需要站在小框内进行表演.但是表演过程中有如下要求: (1)每一个小框只能站立一个拉拉队 ...
- UVA 11806 Cheerleaders (容斥原理)
题意 一个n*m的区域内,放k个啦啦队员,第一行,最后一行,第一列,最后一列一定要放,一共有多少种方法. 思路 设A1表示第一行放,A2表示最后一行放,A3表示第一列放,A4表示最后一列放,则要求|A ...
随机推荐
- bzoj 1296 DP
对于每一行做DP预处理,w[i][j]代表这一行前i个刷j次的最大价值,那么w[i][j]=max(w[i][j],w[k][j-1]+sum[k+1][i]),sum[i][j]为i-j段刷一次最多 ...
- [Linux]Linux printf 输出重定向【转】
转自:http://www.cnblogs.com/aaronLinux/p/6765145.html?utm_source=itdadao&utm_medium=referral 方法一 # ...
- 自动化测试===Macaca环境搭建,自我总结
安装jdk 安装安卓sdk(打开sdk的时候出现问题linux===启动sdk manager下载配置sdk的时候报错的解决办法) 安装gradle,配置环境变量(MACACA===gradle下载和 ...
- Linux时间子系统之八:动态时钟框架(CONFIG_NO_HZ、tickless)【转】
转自:http://blog.csdn.net/droidphone/article/details/8112948 版权声明:本文为博主原创文章,未经博主允许不得转载. 目录(?)[-] 数据结 ...
- 【Educational Codeforces Round 19】
这场edu蛮简单的…… 连道数据结构题都没有…… A.随便质因数分解凑一下即可. #include<bits/stdc++.h> #define N 100005 using namesp ...
- git更新远程仓库代码到本地
1 使用命令查看连接的远程的仓库 git remote -v 2 远程获取代码 git fetch origin master 如果出现 Already up-to-date 说明代码更新好了 出现 ...
- 2t3ik、ddgs与Linux异常文件下载处理
异常1: 这样的邮件发生了两周了,烦得很.进入服务器,用top看来下进程. 解决办法 首先 kill 相关PID 进入/tmp/ 删除相关文件 rm -rf 2t3ik相关文件 不给相关文件修改权 ...
- 文件权限之facl丶文件属性丶特殊权限
(1)facl:文件的访问控制列表 作用:对象目录或文件可以对不同的用户设定不同的权限 1)getfacl:查看文件或目录的访问控制列表权限 查看 getfacl file/dir acl权限特征:如 ...
- 启动WAMPSERVER出现计算机中丢失 MSVCR110.dll
最近电脑因为系统损坏无法启动,不得已重装系统,也让PHP程序员雷雪松下决心坚决的抛弃XP系统.这样一来跟上时代的步伐,二来也为Win7的市场占有率和消灭IE7以下浏览器做点贡献.,作为一个PHP程序员 ...
- For input string: "..."
之前在项目中通过EL表达式从cart 中取出itemPirce这个值时始终报:For input string: "${cart.itemPrice / 100}" 错误. 事故原 ...