HDU1815 2-sat+二分
Building roads |
| Time Limit: 10000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) |
| Total Submission(s): 30 Accepted Submission(s): 12 |
|
Problem Description
Farmer John's farm has N barns, and there are some cows that live in each barn. The cows like to drop around, so John wants to build some roads to connect these barns. If he builds roads for every pair of different barns, then he must build N * (N - 1) / 2 roads, which is so costly that cheapskate John will never do that, though that's the best choice for the cows.
Clever John just had another good idea. He first builds two transferring point S1 and S2, and then builds a road connecting S1 and S2 and N roads connecting each barn with S1 or S2, namely every barn will connect with S1 or S2, but not both. So that every pair of barns will be connected by the roads. To make the cows don't spend too much time while dropping around, John wants to minimize the maximum of distances between every pair of barns. That's not the whole story because there is another troublesome problem. The cows of some barns hate each other, and John can't connect their barns to the same transferring point. The cows of some barns are friends with each other, and John must connect their barns to the same transferring point. What a headache! Now John turns to you for help. Your task is to find a feasible optimal road-building scheme to make the maximum of distances between every pair of barns as short as possible, which means that you must decide which transferring point each barn should connect to. We have known the coordinates of S1, S2 and the N barns, the pairs of barns in which the cows hate each other, and the pairs of barns in which the cows are friends with each other. Note that John always builds roads vertically and horizontally, so the length of road between two places is their Manhattan distance. For example, saying two points with coordinates (x1, y1) and (x2, y2), the Manhattan distance between them is |x1 - x2| + |y1 - y2|. |
|
Input
The first line of input consists of 3 integers N, A and B (2 <= N <= 500, 0 <= A <= 1000, 0 <= B <= 1000), which are the number of barns, the number of pairs of barns in which the cows hate each other and the number of pairs of barns in which the cows are friends with each other.
Next line contains 4 integer sx1, sy1, sx2, sy2, which are the coordinates of two different transferring point S1 and S2 respectively. Each of the following N line contains two integer x and y. They are coordinates of the barns from the first barn to the last one. Each of the following A lines contains two different integers i and j(1 <= i < j <= N), which represent the i-th and j-th barns in which the cows hate each other. The same pair of barns never appears more than once. Each of the following B lines contains two different integers i and j(1 <= i < j <= N), which represent the i-th and j-th barns in which the cows are friends with each other. The same pair of barns never appears more than once. You should note that all the coordinates are in the range [-1000000, 1000000]. |
|
Output
You just need output a line containing a single integer, which represents the maximum of the distances between every pair of barns, if John selects the optimal road-building scheme. Note if there is no feasible solution, just output -1.
|
|
Sample Input
4 1 1 |
|
Sample Output
53246 |
|
Source
POJ Monthly - 2006.01.22 - zhucheng
|
题意:
有n个仓库,两个中转站s1,s2,要求每个农场要么和S1场地连接要么和S2场地连接,且每个农场之间的连接距离的最大值最小 ,有a对仓库不能连同一个中转站,b对仓库必须连同一个中转站。
代码:
/*
二分枚举最大距离L,判断一下每个农场可连接的场地(以下的连边表示,a表示和S1连接,!a表示和S2连接)
(前提是dis[a][s1/s2]<=L,dis[b][s1/s2]<=L......................)
如果dis[a][S1] + dis[b][S1] > L,那么表明a和b不能同时和S1连接,连边a -> !b, b->!a
如果dis[a][S2] + dis[b][S2] > L,那么表明a和b不能同时和S2连接,连边!a -> b, !b->a
如果dis[a][S1] + dis[b][S2] + dis[S1][S2] > L,那么表明a农场连接S1时,b农场不能连接S2。b农场连接S2时,a农场不能连接S1,连边 a->b, !b->!a
如果dis[a][S2] + dis[b][S1] + dis[S1][S2] > L,那么表明a农场连接S2时,b农场不能连接S1。b农场连接S1时,a农场不能连接S2,连边 !a->!b, b->a 接下来还要处理A中不可连接限制和B种连接限制.
注意:二分范围如果小了会wa的。
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<cmath>
using namespace std;
const int maxn=;
int dis[][],x[],y[],likx[],liky[],hatx[],haty[];
/********************** 2-sat模板 **********************/
struct Twosat{
int n;
vector<int> g[maxn*];
bool mark[maxn*];
int s[maxn*],c;
bool dfs(int x){
if(mark[x^]) return false;
if(mark[x]) return true;
mark[x]=true;
s[c++]=x;
for(int i=;i<(int)g[x].size();i++)
if(!dfs(g[x][i])) return false;
return true;
}
void init(int n){
this->n=n;
for(int i=;i<n*;i++) g[i].clear();
memset(mark,,sizeof(mark));
}
void add_clause(int x,int xval,int y,int yval){//这个函数随题意变化
x=x*+xval;
y=y*+yval;
g[x].push_back(y);
}
bool solve(){
for(int i=;i<n*;i+=)
if(!mark[i]&&!mark[i+]){
c=;
if(!dfs(i)){
while(c>) mark[s[--c]]=false;
if(!dfs(i+)) return false;
}
}
return true;
}
};
/*********************** 2-sat模板 ************************/
int main(){
int n,A,B,a,b;
Twosat solver;
while(~scanf("%d%d%d",&n,&A,&B)){
scanf("%d%d%d%d",&x[n],&y[n],&x[n+],&y[n+]);
for(int i=;i<n;i++){
scanf("%d%d",&x[i],&y[i]);
dis[i][n]=dis[n][i]=(fabs(x[i]-x[n])+fabs(y[i]-y[n]));
dis[i][n+]=dis[n+][i]=(fabs(x[i]-x[n+])+fabs(y[i]-y[n+]));
} dis[n][n+]=dis[n+][n]=(fabs(x[n]-x[n+])+fabs(y[n]-y[n+]));
for(int i=;i<A;i++){
scanf("%d%d",&a,&b);
a--;b--;
hatx[i]=a;haty[i]=b;
}
for(int i=;i<B;i++){
scanf("%d%d",&a,&b);
a--;b--;
likx[i]=a;liky[i]=b;
}
int L=,R=,M,ans=-;
while(L<=R){
M=(L+R)/;
solver.init(n);
for(int i=;i<A;i++){
solver.add_clause(hatx[i],,haty[i],);
solver.add_clause(hatx[i],,haty[i],);
solver.add_clause(haty[i],,hatx[i],);
solver.add_clause(haty[i],,hatx[i],);
}
for(int i=;i<B;i++){
solver.add_clause(likx[i],,liky[i],);
solver.add_clause(likx[i],,liky[i],);
solver.add_clause(liky[i],,likx[i],);
solver.add_clause(liky[i],,likx[i],);
}
for(int i=;i<n;i++){
//if(dis[i][n]>M) solver.add_clause(i,0,i,1);
//if(dis[i][n+1]>M) solver.add_clause(i,1,i,0);
for(int j=i+;j<n;j++){
if(dis[i][n]<=M&&dis[j][n]<=M&&dis[i][n]+dis[j][n]>M){
solver.add_clause(i,,j,);
solver.add_clause(j,,i,);
}
if(dis[i][n+]<=M&&dis[j][n+]<=M&&dis[i][n+]+dis[j][n+]>M){
solver.add_clause(i,,j,);
solver.add_clause(j,,i,);
}
if(dis[i][n]<=M&&dis[j][n+]<=M&&dis[i][n]+dis[j][n+]+dis[n][n+]>M){
solver.add_clause(i,,j,);
solver.add_clause(j,,j,);
}
if(dis[i][n+]<=M&&dis[j][n]<=M&&dis[i][n+]+dis[j][n]+dis[n][n+]>M){
solver.add_clause(i,,j,);
solver.add_clause(j,,i,);
}
}
}
if(solver.solve()) {R=M-;ans=M;}
else L=M+;
}
printf("%d\n",ans);
}
return ;
}
HDU1815 2-sat+二分的更多相关文章
- HDU1815(二分+2-SAT)
Building roads Time Limit: 10000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)T ...
- hdu1815 2sat + 二分 + 建图
题意: 给你两个总部,s1 ,s2,和n个点,任意两点之间都是通过这个总部相连的,其中有一些点不能连在同一个总部上,有一些点可以连接在同一个总部上,总部和总部之间可以直接连接,就是假如a, ...
- HDU1815 Building roads(二分+2-SAT)
Problem Description Farmer John's farm has N barns, and there are some cows that live in each barn. ...
- 证明与计算(3): 二分决策图(Binary Decision Diagram, BDD)
0x01 布尔代数(Boolean algebra) 大名鼎鼎鼎的stephen wolfram在2015年的时候写了一篇介绍George Boole的文章:George Boole: A 200-Y ...
- Map Labeler POJ - 2296(2 - sat 具体关系建边)
题意: 给出n个点 让求这n个点所能建成的正方形的最大边长,要求不覆盖,且这n个点在正方形上或下边的中点位置 解析: 当然是二分,但建图就有点还行..比较难想..行吧...我太垃圾... 2 - s ...
- LA 3211 飞机调度(2—SAT)
https://vjudge.net/problem/UVALive-3211 题意: 有n架飞机需要着陆,每架飞机都可以选择“早着陆”和“晚着陆”两种方式之一,且必须选择一种,第i架飞机的早着陆时间 ...
- UVALive - 3211 (2-SAT + 二分)
layout: post title: 训练指南 UVALive - 3211 (2-SAT + 二分) author: "luowentaoaa" catalog: true m ...
- hdu3715 2-sat+二分
Go Deeper 题意:确定一个0/1数组(size:n)使得满足最多的条件数.条件在数组a,b,c给出. 吐槽:哎,一水提,还搞了很久!关键是抽象出题目模型(如上的一句话).以后做二sat:有哪些 ...
- POJ 2749 2SAT判定+二分
题意:图上n个点,使每个点都与俩个中转点的其中一个相连(二选一,典型2-sat),并使任意两点最大 距离最小(最大最小,2分答案),有些点相互hata,不能选同一个中转点,有些点相互LOVE,必需选相 ...
随机推荐
- 上楼梯问题(递归C++)
[问题描述] 小明上楼梯,一次可以迈1步,2步和3步,假设楼梯共有n个台阶,输出他所有的走法. [代码展示] #include<iostream>using namespace std;i ...
- vscode开发智能合约
开发工具 EOS 开发终极神器-vscode (你绝对找不到的干货) lome · 2018年04月19日 · 最后由 18636292520 回复于 2018年09月15日 · 15672 次阅读 ...
- 阿里校招内推C++岗位编程题第一题 空格最少的字符串
给定一个字符串S和有效单词的字典D,请确定可以插入到S中的最小空格数,使得最终的字符串完全由D中的有效单词组成.并输出解. 如果没有解则应该输出n/a 例如: 输入: S = “ilikealibab ...
- Simple Expression
Description You probably know that Alex is a very serious mathematician and he likes to solve seriou ...
- PHPCMS v9的表单向导实现问答咨询功能的方法
本文主要介绍了在phpcms v9的表单向导里实现问答咨询功能的方法 phpcms v9内容管理系统本身是没有问答模块的,只有表单向导,但表单向导有很大的局限性,通过表单向导,我们只能查看用户提交的信 ...
- 软件工程课堂作业(五)——终极版随机产生四则运算题目(C++)
一.升级要求:让程序能接受用户输入答案,并判定对错.最后给出总共对/错的数量. 二.设计思想: 1.首先输入答案并判断对错.我想到的是定义两个数组,一个存放用户算的结果,另一个存放正确答案.每输出一道 ...
- POJ 2229 计数DP
dp[i]代表是数字i的最多组合数如果i是一个奇数,i的任意一个组合都包含1,所以dp[i] = dp[i-1] 如果i是一个偶数,分两种情况讨论,一种是序列中包含1,因此dp[i]=dp[i-1]一 ...
- lintcode-158-两个字符串是变位词
158-两个字符串是变位词 写出一个函数 anagram(s, t) 判断两个字符串是否可以通过改变字母的顺序变成一样的字符串. 说明 What is Anagram? Two strings are ...
- opencv2.4.0版本不支持Mat的大小自动调整?
在opencv2.4.9中,resize(img,img,Size(850,550))是没问题的.到了2.4.0中,要新声明一个变量Mat img1;resize(img,img1,Size(850, ...
- Java取两个变量不为空的变量的简便方法!
一.需求 最近在项目中遇到一个小问题,即从数据库取两个变量,判断取出的变量是否为空,取不为空的变量:若两个变量都不为空,取两个变量:两个变量都为空,则跳过: 二.解决方案(这里提供两种思路) 1.第一 ...