Building roads

Time Limit: 10000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 30 Accepted Submission(s): 12
 
Problem Description
Farmer John's farm has N barns, and there are some cows that live in each barn. The cows like to drop around, so John wants to build some roads to connect these barns. If he builds roads for every pair of different barns, then he must build N * (N - 1) / 2 roads, which is so costly that cheapskate John will never do that, though that's the best choice for the cows.

Clever John just had another good idea. He first builds two transferring point S1 and S2, and then builds a road connecting S1 and S2 and N roads connecting each barn with S1 or S2, namely every barn will connect with S1 or S2, but not both. So that every pair of barns will be connected by the roads. To make the cows don't spend too much time while dropping around, John wants to minimize the maximum of distances between every pair of barns.

That's not the whole story because there is another troublesome problem. The cows of some barns hate each other, and John can't connect their barns to the same transferring point. The cows of some barns are friends with each other, and John must connect their barns to the same transferring point. What a headache! Now John turns to you for help. Your task is to find a feasible optimal road-building scheme to make the maximum of distances between every pair of barns as short as possible, which means that you must decide which transferring point each barn should connect to.

We have known the coordinates of S1, S2 and the N barns, the pairs of barns in which the cows hate each other, and the pairs of barns in which the cows are friends with each other.

Note that John always builds roads vertically and horizontally, so the length of road between two places is their Manhattan distance. For example, saying two points with coordinates (x1, y1) and (x2, y2), the Manhattan distance between them is |x1 - x2| + |y1 - y2|.

 
Input
The first line of input consists of 3 integers N, A and B (2 <= N <= 500, 0 <= A <= 1000, 0 <= B <= 1000), which are the number of barns, the number of pairs of barns in which the cows hate each other and the number of pairs of barns in which the cows are friends with each other.

Next line contains 4 integer sx1, sy1, sx2, sy2, which are the coordinates of two different transferring point S1 and S2 respectively.

Each of the following N line contains two integer x and y. They are coordinates of the barns from the first barn to the last one.

Each of the following A lines contains two different integers i and j(1 <= i < j <= N), which represent the i-th and j-th barns in which the cows hate each other.

The same pair of barns never appears more than once.

Each of the following B lines contains two different integers i and j(1 <= i < j <= N), which represent the i-th and j-th barns in which the cows are friends with each other. The same pair of barns never appears more than once.

You should note that all the coordinates are in the range [-1000000, 1000000].

 
Output
You just need output a line containing a single integer, which represents the maximum of the distances between every pair of barns, if John selects the optimal road-building scheme. Note if there is no feasible solution, just output -1. 
 
Sample Input
4 1 1
12750 28546 15361 32055
6706 3887
10754 8166
12668 19380
15788 16059
3 4
2 3
 
Sample Output
53246
 
 
Source
POJ Monthly - 2006.01.22 - zhucheng
 

题意:

有n个仓库,两个中转站s1,s2,要求每个农场要么和S1场地连接要么和S2场地连接,且每个农场之间的连接距离的最大值最小 ,有a对仓库不能连同一个中转站,b对仓库必须连同一个中转站。

代码:

/*
二分枚举最大距离L,判断一下每个农场可连接的场地(以下的连边表示,a表示和S1连接,!a表示和S2连接)
(前提是dis[a][s1/s2]<=L,dis[b][s1/s2]<=L......................)
如果dis[a][S1] + dis[b][S1] > L,那么表明a和b不能同时和S1连接,连边a -> !b, b->!a
如果dis[a][S2] + dis[b][S2] > L,那么表明a和b不能同时和S2连接,连边!a -> b, !b->a
如果dis[a][S1] + dis[b][S2] + dis[S1][S2] > L,那么表明a农场连接S1时,b农场不能连接S2。b农场连接S2时,a农场不能连接S1,连边 a->b, !b->!a
如果dis[a][S2] + dis[b][S1] + dis[S1][S2] > L,那么表明a农场连接S2时,b农场不能连接S1。b农场连接S1时,a农场不能连接S2,连边 !a->!b, b->a 接下来还要处理A中不可连接限制和B种连接限制.
注意:二分范围如果小了会wa的。
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<cmath>
using namespace std;
const int maxn=;
int dis[][],x[],y[],likx[],liky[],hatx[],haty[];
/********************** 2-sat模板 **********************/
struct Twosat{
int n;
vector<int> g[maxn*];
bool mark[maxn*];
int s[maxn*],c;
bool dfs(int x){
if(mark[x^]) return false;
if(mark[x]) return true;
mark[x]=true;
s[c++]=x;
for(int i=;i<(int)g[x].size();i++)
if(!dfs(g[x][i])) return false;
return true;
}
void init(int n){
this->n=n;
for(int i=;i<n*;i++) g[i].clear();
memset(mark,,sizeof(mark));
}
void add_clause(int x,int xval,int y,int yval){//这个函数随题意变化
x=x*+xval;
y=y*+yval;
g[x].push_back(y);
}
bool solve(){
for(int i=;i<n*;i+=)
if(!mark[i]&&!mark[i+]){
c=;
if(!dfs(i)){
while(c>) mark[s[--c]]=false;
if(!dfs(i+)) return false;
}
}
return true;
}
};
/*********************** 2-sat模板 ************************/
int main(){
int n,A,B,a,b;
Twosat solver;
while(~scanf("%d%d%d",&n,&A,&B)){
scanf("%d%d%d%d",&x[n],&y[n],&x[n+],&y[n+]);
for(int i=;i<n;i++){
scanf("%d%d",&x[i],&y[i]);
dis[i][n]=dis[n][i]=(fabs(x[i]-x[n])+fabs(y[i]-y[n]));
dis[i][n+]=dis[n+][i]=(fabs(x[i]-x[n+])+fabs(y[i]-y[n+]));
} dis[n][n+]=dis[n+][n]=(fabs(x[n]-x[n+])+fabs(y[n]-y[n+]));
for(int i=;i<A;i++){
scanf("%d%d",&a,&b);
a--;b--;
hatx[i]=a;haty[i]=b;
}
for(int i=;i<B;i++){
scanf("%d%d",&a,&b);
a--;b--;
likx[i]=a;liky[i]=b;
}
int L=,R=,M,ans=-;
while(L<=R){
M=(L+R)/;
solver.init(n);
for(int i=;i<A;i++){
solver.add_clause(hatx[i],,haty[i],);
solver.add_clause(hatx[i],,haty[i],);
solver.add_clause(haty[i],,hatx[i],);
solver.add_clause(haty[i],,hatx[i],);
}
for(int i=;i<B;i++){
solver.add_clause(likx[i],,liky[i],);
solver.add_clause(likx[i],,liky[i],);
solver.add_clause(liky[i],,likx[i],);
solver.add_clause(liky[i],,likx[i],);
}
for(int i=;i<n;i++){
//if(dis[i][n]>M) solver.add_clause(i,0,i,1);
//if(dis[i][n+1]>M) solver.add_clause(i,1,i,0);
for(int j=i+;j<n;j++){
if(dis[i][n]<=M&&dis[j][n]<=M&&dis[i][n]+dis[j][n]>M){
solver.add_clause(i,,j,);
solver.add_clause(j,,i,);
}
if(dis[i][n+]<=M&&dis[j][n+]<=M&&dis[i][n+]+dis[j][n+]>M){
solver.add_clause(i,,j,);
solver.add_clause(j,,i,);
}
if(dis[i][n]<=M&&dis[j][n+]<=M&&dis[i][n]+dis[j][n+]+dis[n][n+]>M){
solver.add_clause(i,,j,);
solver.add_clause(j,,j,);
}
if(dis[i][n+]<=M&&dis[j][n]<=M&&dis[i][n+]+dis[j][n]+dis[n][n+]>M){
solver.add_clause(i,,j,);
solver.add_clause(j,,i,);
}
}
}
if(solver.solve()) {R=M-;ans=M;}
else L=M+;
}
printf("%d\n",ans);
}
return ;
}

HDU1815 2-sat+二分的更多相关文章

  1. HDU1815(二分+2-SAT)

    Building roads Time Limit: 10000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)T ...

  2. hdu1815 2sat + 二分 + 建图

    题意:       给你两个总部,s1 ,s2,和n个点,任意两点之间都是通过这个总部相连的,其中有一些点不能连在同一个总部上,有一些点可以连接在同一个总部上,总部和总部之间可以直接连接,就是假如a, ...

  3. HDU1815 Building roads(二分+2-SAT)

    Problem Description Farmer John's farm has N barns, and there are some cows that live in each barn. ...

  4. 证明与计算(3): 二分决策图(Binary Decision Diagram, BDD)

    0x01 布尔代数(Boolean algebra) 大名鼎鼎鼎的stephen wolfram在2015年的时候写了一篇介绍George Boole的文章:George Boole: A 200-Y ...

  5. Map Labeler POJ - 2296(2 - sat 具体关系建边)

    题意: 给出n个点  让求这n个点所能建成的正方形的最大边长,要求不覆盖,且这n个点在正方形上或下边的中点位置 解析: 当然是二分,但建图就有点还行..比较难想..行吧...我太垃圾... 2 - s ...

  6. LA 3211 飞机调度(2—SAT)

    https://vjudge.net/problem/UVALive-3211 题意: 有n架飞机需要着陆,每架飞机都可以选择“早着陆”和“晚着陆”两种方式之一,且必须选择一种,第i架飞机的早着陆时间 ...

  7. UVALive - 3211 (2-SAT + 二分)

    layout: post title: 训练指南 UVALive - 3211 (2-SAT + 二分) author: "luowentaoaa" catalog: true m ...

  8. hdu3715 2-sat+二分

    Go Deeper 题意:确定一个0/1数组(size:n)使得满足最多的条件数.条件在数组a,b,c给出. 吐槽:哎,一水提,还搞了很久!关键是抽象出题目模型(如上的一句话).以后做二sat:有哪些 ...

  9. POJ 2749 2SAT判定+二分

    题意:图上n个点,使每个点都与俩个中转点的其中一个相连(二选一,典型2-sat),并使任意两点最大 距离最小(最大最小,2分答案),有些点相互hata,不能选同一个中转点,有些点相互LOVE,必需选相 ...

随机推荐

  1. Android开发-API指南-<supports-screens>

    <supports-screens> 英文原文:http://developer.android.com/guide/topics/manifest/supports-screens-el ...

  2. Windows10系统tensorflow-gpu安装

    准备工作 安装前请确保自己的显卡支持gpu加速,支持加速的gpu型号可在下面的链接中查询. https://www.geforce.com/hardware/technology/cuda/suppo ...

  3. Map Reduce Application(Partitioninig/Binning)

    Map Reduce Application(Partitioninig/Group data by a defined key) Assuming we want to group data by ...

  4. nodejs笔记--mysql篇(四)

    测试连接 var mysql = require('mysql'); //调用MySQL模块 //创建一个connection var connection = mysql.createConnect ...

  5. 关于jquery几个自己不咋用到的常用遍历赛选的api

    1.contains:作用是返回包含某个文字的元素节点 例子:要给所以含有“lyz”的p节点加样式: 可以这样:$("p:contains(lyz)").css("col ...

  6. 基于NABCD评论“欢迎来怼”团队Alpha版作品

    NABCD分析 N(需求) 随着博客园网页版的出现,大家希望能够随时看自己博客,查看别人的博客,以及写博客,评论博客等功能.对于学生的我们,及时了解作业的动态很重要,电脑不能随时携带,但手机随身携带, ...

  7. Spark GraphX 2

    顶点:VertexRDD   边:EdgeRDD.Edge.EdgeDirection   Triplet:EdgeTriplet   存储:PartitionStrategy 通常的存储方式有两种: ...

  8. PHP 签到,与时间获取,数组长度获取

    本文实例讲述了php实现签到功能的方法.分享给大家供大家参考,具体如下:首先我在数据库里建了两张表,一个是用户的积分表,一个是签到状态表,分来用来记录用户的积分数和先到状态 在用户签到状态表中我们有一 ...

  9. 第二次作业(1001.A+B Format (20))

    代码文件及题目描写已放至此 一开始看题目的时候有点没看懂,要求把数分组是什么意思.如果只是单纯的a+b的话是不可能的,所以关于这一点犹豫了很久.本来以为是指把a,b,以及它们的和c各建一个数组,但只输 ...

  10. 【Spring.Net】- 环境搭建

    参考文章:http://www.cnblogs.com/GoodHelper/archive/2009/10/25/SpringNET_Config.html 一.环境下载及安装 到Spring的官方 ...