题目来源: HackerRank
基准时间限制:2 秒 空间限制:131072 KB 分值: 640 
C(M,N) = M! / N! / (M - N)! (组合数)。给出M和质数p,求C(M,0), C(M,1)......C(M,M)这M + 1个数中,有多少数不是p的倍数,有多少是p的倍数但不是p^2的倍数,有多少是p^2的倍数但不是p^3的倍数......。

例如:M = 10, P = 2。C(10,0) -> C(10,10)
分别为:1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1。
P的幂 = 1 2 4 8 16......
 
1 45 45 1 这4个数只能整除1。
10 210 210 10这4个数能整除2但不能整除4。
252 能整除4但不能整除8。
120 120 这2个数能整除8但不能整除16。
 
所以输出:4 4 1 2。
Input
第1行:一个数T,表示输入的测试数量(1 <= T <= 5000)
第2 - T + 1行:每行2个数,M和P,中间用空格分隔(2 <= M, P <= 10^18)
Output
输出共T行,每行若干个数,中间用空格分隔,对应组合数的数量。
Input示例
3
4 5
6 3
10 2
Output示例
5
3 4
4 4 1 2

数学 kummer定理 数位DP

又是奇怪的定理题

kummer定理:设m,n为正整数,p为素数,则C(下m+n上m)含p的幂次等于m+n在p进制下的进位次数。

设$ f[i][j][0/1] $表示当前考虑了低i位,已有的幂次为j(即已经进位j次),当前位是否大于n。

然后就可以愉快(并不)地数位DP了

 #include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
using namespace std;
const int mxn=;
LL read(){
LL x=,f=;char ch=getchar();
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*-''+ch;ch=getchar();}
return x*f;
}
int n;
LL m,P;
int a[mxn];
LL f[mxn][mxn][];
void solve(){
n=;
LL bas=m;
while(m){
a[++n]=m%P;
m/=P;
}
f[][][]=;
int i,j;
for(i=;i<=n;i++){
for(j=;j<=i;j++){
f[i][j][]=f[i-][j][]*(a[i]+)+(j?f[i-][j-][]*a[i]:);
f[i][j][]=f[i-][j][]*(P-a[i]-)+(j?f[i-][j-][]*(P-a[i]):);
}
}
LL now=;
for(i=;i>=;i++){
printf("%lld ",f[n][i][]);
now+=f[n][i][];
if(now>bas-)break;
}
puts("");
return;
}
int main(){
int i,j;
int T=read();
while(T--){
m=read();P=read();
solve();
}
return ;
}

51nod1245 Binomial Coefficients Revenge的更多相关文章

  1. 51nod 1245 Binomial Coefficients Revenge

    Description C(M,N) = M! / N! / (M - N)! (组合数).给出M和质数p,求C(M,0), C(M,1)......C(M,M)这M + 1个数中,有多少数不是p的倍 ...

  2. 【51nod 1245】Binomial Coefficients Revenge

    题目大意 C(M,N) = M! / N! / (M - N)! (组合数).给出M和质数p,求C(M,0), C(M,1)......C(M,M)这M + 1个数中,有多少数不是p的倍数,有多少是p ...

  3. UVA 1649 Binomial coefficients

    https://vjudge.net/problem/UVA-1649 题意: 输入m,求所有的C(n,k)=m m<=1e15 如果枚举n,那么C(n,k)先递增后递减 如果枚举k,那么C(n ...

  4. UVa 1649 Binomial coefficients 数学

    题意: \(C(n, k) = m(2 \leq m \leq 10^{15})\),给出\(m\)求所有可能的\(n\)和\(k\). 分析: 设\(minK = min(k, n - k)\),容 ...

  5. UVA - 1649 Binomial coefficients (组合数+二分)

    题意:求使得C(n,k)=m的所有的n,k 根据杨辉三角可以看出,当k固定时,C(n,k)是相对于n递增的:当n固定且k<=n/2时,C(n,k)是相对于k递增的,因此可以枚举其中的一个,然后二 ...

  6. Some series and integrals involving the Riemann zeta function binomial coefficients and the harmonic numbers

    链接:http://pan.baidu.com/s/1eSNkz4Y

  7. 99 Lisp Problems 列表处理(P1~P28)

    L-99: Ninety-Nine Lisp Problems 列表处理类问题的解答,用Scheme实现,首先定义几个在后续解题中用到的公共过程: ; common procedure (define ...

  8. UVA10375 Choose and divide 质因数分解

    质因数分解: Choose and divide Time Limit: 3000MS   Memory Limit: Unknown   64bit IO Format: %lld & %l ...

  9. 【AtCoder】ARC095 C-F题解

    我居然每道题都能想出来 虽然不是每道题都能写对,debug了很久/facepalm C - Many Medians 排序后前N/2个数的中位数时排序后第N/2 + 1的数 其余的中位数都是排序后第N ...

随机推荐

  1. Linux上安装MySQL - 12条命令搞定MySql

    从零开始安装mysql数据库 : 按照该顺序执行 :  a. 查看是否安装有mysql:yum list installed mysql*, 如果有先卸载掉, 然后在进行安装; b. 安装mysql客 ...

  2. 第一、二章——Python简介与Python基础

    前言:<Data Wrangling with Python>这本书主要是讲使用Pyhon来处理各种类型保存的数据的. 第一章:Python简介 1.版本选择 本书选择的Python版本是 ...

  3. LintCode-174.删除链表中倒数第n个节点

    删除链表中倒数第n个节点 给定一个链表,删除链表中倒数第n个节点,返回链表的头节点. 注意事项 链表中的节点个数大于等于n 样例 给出链表 1->2->3->4->5-> ...

  4. win7 php连接远程oracle

    <?php /* 先下载oracle客户端 下载地址 http://www.oracle.com/technetwork/topics/winx64soft-089540.html 下载如下三个 ...

  5. 【TCP】- TCP协议简介

    转载:https://blog.csdn.net/ningdaxing1994/article/details/73076795 TCP 是互联网核心协议之一,本文介绍它的基础知识. 一.TCP 协议 ...

  6. java得到当前时间

    SimpleDateFormat timeformat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss"); java.util.Date ...

  7. 查询MySQL某字段相同值得重复数据

    1.先查询重复的id: SELECT book_id,COUNT(*) AS COUNT FROM xs_book_source WHERE site_id=5 GROUP BY book_id HA ...

  8. IE BHO的IObjectWithSite接口

    Internet Explorer的BHO的对象必须实现IObjectWithSite接口.该接口是IE用来对插件进行管理和通讯的一个接口,其有SetSite和GetSite两个方法,当IE加载和卸载 ...

  9. 【bzoj1370】[Baltic2003]Gang团伙 并查集

    题目描述 在某城市里住着n个人,任何两个认识的人不是朋友就是敌人,而且满足: 1. 我朋友的朋友是我的朋友: 2. 我敌人的敌人是我的朋友: 所有是朋友的人组成一个团伙.告诉你关于这n个人的m条信息, ...

  10. c# 日志记录 行号

    Console.WriteLine(ex.Message); //通过如下代码来记录异常详细的信息 ); Console.WriteLine("文件名:{0},行号:{1},列号:{2}&q ...