题目来源: HackerRank
基准时间限制:2 秒 空间限制:131072 KB 分值: 640 
C(M,N) = M! / N! / (M - N)! (组合数)。给出M和质数p,求C(M,0), C(M,1)......C(M,M)这M + 1个数中,有多少数不是p的倍数,有多少是p的倍数但不是p^2的倍数,有多少是p^2的倍数但不是p^3的倍数......。

例如:M = 10, P = 2。C(10,0) -> C(10,10)
分别为:1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1。
P的幂 = 1 2 4 8 16......
 
1 45 45 1 这4个数只能整除1。
10 210 210 10这4个数能整除2但不能整除4。
252 能整除4但不能整除8。
120 120 这2个数能整除8但不能整除16。
 
所以输出:4 4 1 2。
Input
第1行:一个数T,表示输入的测试数量(1 <= T <= 5000)
第2 - T + 1行:每行2个数,M和P,中间用空格分隔(2 <= M, P <= 10^18)
Output
输出共T行,每行若干个数,中间用空格分隔,对应组合数的数量。
Input示例
3
4 5
6 3
10 2
Output示例
5
3 4
4 4 1 2

数学 kummer定理 数位DP

又是奇怪的定理题

kummer定理:设m,n为正整数,p为素数,则C(下m+n上m)含p的幂次等于m+n在p进制下的进位次数。

设$ f[i][j][0/1] $表示当前考虑了低i位,已有的幂次为j(即已经进位j次),当前位是否大于n。

然后就可以愉快(并不)地数位DP了

 #include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
using namespace std;
const int mxn=;
LL read(){
LL x=,f=;char ch=getchar();
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*-''+ch;ch=getchar();}
return x*f;
}
int n;
LL m,P;
int a[mxn];
LL f[mxn][mxn][];
void solve(){
n=;
LL bas=m;
while(m){
a[++n]=m%P;
m/=P;
}
f[][][]=;
int i,j;
for(i=;i<=n;i++){
for(j=;j<=i;j++){
f[i][j][]=f[i-][j][]*(a[i]+)+(j?f[i-][j-][]*a[i]:);
f[i][j][]=f[i-][j][]*(P-a[i]-)+(j?f[i-][j-][]*(P-a[i]):);
}
}
LL now=;
for(i=;i>=;i++){
printf("%lld ",f[n][i][]);
now+=f[n][i][];
if(now>bas-)break;
}
puts("");
return;
}
int main(){
int i,j;
int T=read();
while(T--){
m=read();P=read();
solve();
}
return ;
}

51nod1245 Binomial Coefficients Revenge的更多相关文章

  1. 51nod 1245 Binomial Coefficients Revenge

    Description C(M,N) = M! / N! / (M - N)! (组合数).给出M和质数p,求C(M,0), C(M,1)......C(M,M)这M + 1个数中,有多少数不是p的倍 ...

  2. 【51nod 1245】Binomial Coefficients Revenge

    题目大意 C(M,N) = M! / N! / (M - N)! (组合数).给出M和质数p,求C(M,0), C(M,1)......C(M,M)这M + 1个数中,有多少数不是p的倍数,有多少是p ...

  3. UVA 1649 Binomial coefficients

    https://vjudge.net/problem/UVA-1649 题意: 输入m,求所有的C(n,k)=m m<=1e15 如果枚举n,那么C(n,k)先递增后递减 如果枚举k,那么C(n ...

  4. UVa 1649 Binomial coefficients 数学

    题意: \(C(n, k) = m(2 \leq m \leq 10^{15})\),给出\(m\)求所有可能的\(n\)和\(k\). 分析: 设\(minK = min(k, n - k)\),容 ...

  5. UVA - 1649 Binomial coefficients (组合数+二分)

    题意:求使得C(n,k)=m的所有的n,k 根据杨辉三角可以看出,当k固定时,C(n,k)是相对于n递增的:当n固定且k<=n/2时,C(n,k)是相对于k递增的,因此可以枚举其中的一个,然后二 ...

  6. Some series and integrals involving the Riemann zeta function binomial coefficients and the harmonic numbers

    链接:http://pan.baidu.com/s/1eSNkz4Y

  7. 99 Lisp Problems 列表处理(P1~P28)

    L-99: Ninety-Nine Lisp Problems 列表处理类问题的解答,用Scheme实现,首先定义几个在后续解题中用到的公共过程: ; common procedure (define ...

  8. UVA10375 Choose and divide 质因数分解

    质因数分解: Choose and divide Time Limit: 3000MS   Memory Limit: Unknown   64bit IO Format: %lld & %l ...

  9. 【AtCoder】ARC095 C-F题解

    我居然每道题都能想出来 虽然不是每道题都能写对,debug了很久/facepalm C - Many Medians 排序后前N/2个数的中位数时排序后第N/2 + 1的数 其余的中位数都是排序后第N ...

随机推荐

  1. 你代码写得这么丑,一定是因为你长得不好看----panboo第一篇博客

    一.个人介绍 我叫潘博,软嵌162,学号1613072055. 以“panboo”名称混迹于各大开源IT论坛与博客. 除了编程,我的最大爱好是篮球与健身,热衷于各种IT技术与运动. 我做过的软件项目有 ...

  2. 计算器软件实现系列(七)WPF+SQL+策略模式

    一  整体概述 本次设计主要是在WPF的页面中实现的,属于表现层的更换,数据库部分用的还是数据库的封装,其中引用了策略模式 二  设计思路 1 在出题页面,进行试题的编辑,在编辑后会自动保存到数据库中 ...

  3. LintCode-376.二叉树的路径和

    二叉树的路径和 给定一个二叉树,找出所有路径中各节点相加总和等于给定 目标值 的路径. 一个有效的路径,指的是从根节点到叶节点的路径. 样例 给定一个二叉树,和 目标值 = 5: 返回: [      ...

  4. LintCode-72.中序遍历和后序遍历树构造二叉树

    中序遍历和后序遍历树构造二叉树 根据中序遍历和后序遍历树构造二叉树 注意事项 你可以假设树中不存在相同数值的节点 样例 给出树的中序遍历: [1,2,3] 和后序遍历: [1,3,2] 返回如下的树: ...

  5. YaoLingJump开发者日志(三)

      开始第二关的筹建.   增加了地刺和会移动的砖块.   每次增加一个新东西都要改好多代码,好累吖.   把第二关搞出来后发现太难了,强行调整难度.   修复了一些bug.   调整难度后还是发现太 ...

  6. 【Linux】- CentOS 7 安装.NET Core 2.1

    添加dotnet产品Feed 在安装.NET Core之前,您需要注册Microsoft产品Feed. 这只需要做一次. 首先,注册Microsoft签名密钥,然后添加Microsoft产品Feed. ...

  7. matplotlib中什么是后端

    在很多网上文档和邮件列表中提到了"后端",并且很多初学者会对这个术语迷惑.matplotlib把不同使用情形和输出格式作为目标.一些人用matplotlib在python shel ...

  8. 【bzoj2435】[NOI2011]道路修建 树形dp

    题目描述 在 W 星球上有 n 个国家.为了各自国家的经济发展,他们决定在各个国家之间建设双向道路使得国家之间连通.但是每个国家的国王都很吝啬,他们只愿意修建恰好 n – 1条双向道路. 每条道路的修 ...

  9. 【bzoj2190】[SDOI2008]仪仗队 欧拉函数

    题目描述 作为体育委员,C君负责这次运动会仪仗队的训练.仪仗队是由学生组成的N * N的方阵,为了保证队伍在行进中整齐划一,C君会跟在仪仗队的左后方,根据其视线所及的学生人数来判断队伍是否整齐(如下图 ...

  10. NOI1997

    T1 竞赛排名 分析:模拟 超级大模拟,太弱了,写个模拟都要2个小时..写的又难看又麻烦..还需努力 var n,i,j,k:longint; t1:real; x,y:..,..] of real; ...