【hdu5217-括号序列】线段树
题意:给一串括号,有2个操作,1。翻转某个括号。2。查询某段区间内化简后第k个括号是在原序列中的位置。1 ≤ N,Q ≤ 200000.
题解:
可以知道,化简后的序列一定是)))((((这种形式的。
线段树每个节点就存对应区间内化简后的ls也就是)的数量,rs也就是(的数量。
然后我先把区间[l,r]找出来合并一遍,找出第k个是哪一种扩号。
问题转化为找区间[l,r]中的第kk个左扩号或者右括号。
我们可以发现,如果是)这种括号,区间从左到右合并的时候是单调不减的。
同理,(这种括号,区间从右往左合并的时候也是单调不减的。
然后我是变成从左往右的第kk个),或者从右往左的第kk个(。
[l,r]这个区间在线段树里可能由若干个区间组合而来,我们就根据左右括号的不同从左或从右合一遍,恰好遇到第kk个的时候就进去找。这个找就简单很多,因为它就是在线段树上走一遍的。
细节挺多的。
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std; const int N=;
int n,m,tl,cl,c[N];
char s[N];
struct node{
int l,r,lc,rc,ls,rs;// ls ))) rs (((
}t[*N]; int maxx(int x,int y){return x>y ? x:y;} node upd(node x,node lc,node rc)
{
x.ls=lc.ls;
x.rs=rc.rs;
int sum=rc.ls-lc.rs;
if(sum>) x.ls+=sum;
else x.rs+=-sum;
// x.ls=maxx(0,lc.ls+rc.ls-lc.rs);
// x.rs=maxx(0,rc.rs+lc.rs-rc.ls);
return x;
} int bt(int l,int r)
{
int x=++tl;
t[x].l=l;t[x].r=r;
t[x].lc=t[x].rc=;
t[x].ls=t[x].rs=;
if(l<r)
{
int mid=(l+r)/;
t[x].lc=bt(l,mid);
t[x].rc=bt(mid+,r);
int lc=t[x].lc,rc=t[x].rc;
t[x]=upd(t[x],t[lc],t[rc]);
}
else
{
if(s[l]==')') t[x].ls=;
else t[x].rs=;
}
return x;
} void change(int x,int p)
{
if(t[x].l==t[x].r) {swap(t[x].ls,t[x].rs);return ;}
int lc=t[x].lc,rc=t[x].rc,mid=(t[x].l+t[x].r)/;
if(p<=mid) change(lc,p);
else change(rc,p);
t[x]=upd(t[x],t[lc],t[rc]);
} void query(int x,int l,int r)
{
if(t[x].l==l && t[x].r==r) {c[++cl]=x;return;}
int lc=t[x].lc,rc=t[x].rc,mid=(t[x].l+t[x].r)/;
if(r<=mid) query(lc,l,r);
else if(l>mid) query(rc,l,r);
else
{
query(lc,l,mid);
query(rc,mid+,r);
}
} int fd(int x,int k,int tmp)
{
if(t[x].l==t[x].r) return t[x].l;
int lc=t[x].lc,rc=t[x].rc;
if(tmp==)
{
if(t[lc].ls>=k) return fd(lc,k,tmp);
return fd(rc,k-t[lc].ls+t[lc].rs,tmp);
}
else
{
if(t[rc].rs>=k) return fd(rc,k,tmp);
return fd(lc,k-t[rc].rs+t[rc].ls,tmp);
}
} int main()
{
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
scanf("%s",s+);
tl=;bt(,n);
for(int i=;i<=m;i++)
{
int tmp,x,l,r,k,ans;
scanf("%d",&tmp);
if(tmp==)
{
scanf("%d",&x);
change(,x);
}
else
{
scanf("%d%d%d",&l,&r,&k);
cl=;query(,l,r);
node now=t[c[]];
for(int j=;j<=cl;j++) now=upd(now,now,t[c[j]]);
if(now.ls+now.rs<k) {printf("-1\n");continue;}
if(now.ls>=k)
{
node p0=t[c[]],p1;
if(p0.ls>=k) ans=fd(c[],k,);
else
{
for(int j=;j<=cl;j++)
{
p1=upd(p1,p0,t[c[j]]);
if(p1.ls>=k)
{
ans=fd(c[j],k-p0.ls+p0.rs,);
break;
}
p0=p1;
}
}
}
else
{
k=now.ls+now.rs-k+;
node p0=t[c[cl]],p1;
if(p0.rs>=k) ans=fd(c[cl],k,);
else
{
for(int j=cl-;j>=;j--)
{
p1=upd(p1,t[c[j]],p0);
if(p1.rs>=k) {ans=fd(c[j],k-p0.rs+p0.ls,);break;}
p0=p1;
}
}
}
printf("%d\n",ans);
}
}
}
return ;
}
【hdu5217-括号序列】线段树的更多相关文章
- bzoj 1095 [ZJOI2007]Hide 捉迷藏(括号序列+线段树)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1095 [题意] 给定一棵树,树上颜色或白或黑而且可以更改,多个询问求最远黑点之间的距离 ...
- 【BZOJ】1095: [ZJOI2007]Hide 捉迷藏 括号序列+线段树
[题目]BZOJ 1095 [题意]给定n个黑白点的树,初始全为黑点,Q次操作翻转一个点的颜色,或询问最远的两个黑点的距离,\(n \leq 10^5,Q \leq 5*10^5\). [算法]括号序 ...
- BZOJ1095 [ZJOI2007] Hide 捉迷藏 (括号序列 + 线段树)
题意 给你一颗有 \(n\) 个点的树 , 共有 \(m\) 次操作 有两种类别qwq 将树上一个点染黑/白; 询问树上最远的两个黑点的距离. \((n \le 200000, m ≤500000)\ ...
- 【BZOJ 1095】 1095: [ZJOI2007]Hide 捉迷藏 (括号序列+线段树)
1095: [ZJOI2007]Hide 捉迷藏 Description 捉迷藏 Jiajia和Wind是一对恩爱的夫妻,并且他们有很多孩子.某天,Jiajia.Wind和孩子们决定在家里玩捉迷藏游戏 ...
- Snacks HDU 5692 dfs序列+线段树
Snacks HDU 5692 dfs序列+线段树 题意 百度科技园内有n个零食机,零食机之间通过n−1条路相互连通.每个零食机都有一个值v,表示为小度熊提供零食的价值. 由于零食被频繁的消耗和补充, ...
- hdu 4521 小明系列问题——小明序列 线段树+二分
小明系列问题——小明序列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) Pro ...
- BZOJ 4034 树上操作(树的欧拉序列+线段树)
刷个清新的数据结构题爽一爽? 题意: 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x ...
- 【Foreign】划分序列 [线段树][DP]
划分序列 Time Limit: 20 Sec Memory Limit: 256 MB Description Input Output 仅一行一个整数表示答案. Sample Input 9 4 ...
- BZOJ 1798 AHOI2009 Seq 维护序列 线段树
题目大意:维护一个序列,提供三种操作: 1.将区间中每个点的权值乘上一个数 2.将区间中每个点的权值加上一个数 3.求一段区间的和对p取模的值 2631的超^n级弱化版.写2631之前能够拿这个练练手 ...
- poj 2828 Buy Tickets 【买票插队找位置 输出最后的位置序列+线段树】
题目地址:http://poj.org/problem?id=2828 Sample Input 4 0 77 1 51 1 33 2 69 4 0 20523 1 19243 1 3890 0 31 ...
随机推荐
- Crawling is going on - Beta版本测试报告
[Crawling is going on - Beta版本] 测试报告 文件状态: [] 草稿 [√] 正式发布 [] 正在修改 报告编号: 当前版本: 2.0.2 编写人: 周萱.刘昊岩.居玉皓 ...
- QT界面绘制学习记录
1. MVC结构中,model必须作为类的成员变量存在,不可再函数内部申明.否则,会出现函数调用结束,model找不到的错误. 2.QcomboBox可设置为左边空白,右侧一小箭头的形式.代码:com ...
- android BadgeView的使用(图片上的文字提醒)
BadgeView主要是继承了TextView,所以实际上就是一个TextView,底层放了一个label,可以自定义背景图,自定义背景颜色,是否显示,显示进入的动画效果以及显示的位置等等: 这是Gi ...
- lintcode-152-组合
152-组合 组给出两个整数n和k,返回从1......n中选出的k个数的组合. 样例 例如 n = 4 且 k = 2 返回的解为: [[2,4],[3,4],[2,3],[1,2],[1,3],[ ...
- PHP连接Redis操作函数
phpredis是php的一个扩展,效率是相当高有链表排序功能,对创建内存级的模块业务关系 很有用;以下是redis官方提供的命令使用技巧: 下载地址如下: https://github.com/ow ...
- 使用gdb查看栈帧的情况, 没有ebp
0x7fffffffdb58: 0x004005ba 0x00000000 0x00000000 0x00000000 <-----funcb的栈帧 [0x7fffffffdb60, 0x ...
- ADO.NET中DataSet、DataTable、DataRow的数据复制方法
DataSet 对象是支持 ADO.NET的断开式.分布式数据方案的核心对象 ,用途非常广泛.我们很多时候需要使用其中的数据,比如取得一个DataTable的数据或者复制另一个DataTabe中的数据 ...
- 【数据库】各种主流 SQLServer 迁移到 MySQL 工具对比
在部署前期,首要任务就是考虑如何快速把基于 SQL Server 数据库的应用程序移植到阿里云的 MySQL 数据库.由于程序是基于 O/R mapping 编写,并且数据库中没有使用存储过程.用户函 ...
- JAVA的泛型与反射的联合应用
通过泛型与反射的结合,可以编写框架来使开发更容易,这里演示的是BaseDao部分的简单使用. BaseDao部分代码: public abstract class BaseDao<T>{ ...
- bzoj1143-祭祀
题目 给出一个有向无环图,要在上面安放祭祀点.两个祭祀点必须不可达,求最多能安放多少个祭祀点. 分析 由于一条无法再延伸链上只能安放一个祭祀点,而我们要求的是最多能安放祭祀点的个数,所以要求的就是最长 ...