【BZOJ2693】jzptab [莫比乌斯反演]
jzptab
Time Limit: 10 Sec Memory Limit: 512 MB
[Submit][Status][Discuss]
Description

Input
第一行一个 T 表示数据组数
接下来T行 每行两个正整数 表示N、M
Output
T行 每行一个整数 表示第i组数据的结果
Sample Input
4 5
Sample Output
HINT
T <= 10000
N, M<=10000000
Solution
我们先根据BZOJ2154运用莫比乌斯反演推到一个式子,然后优化求解:
Code
#include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
using namespace std;
typedef long long s64; const int ONE = ;
const int MOD = ; int T;
int n,m;
bool isp[ONE];
int prime[],p_num;
int f[ONE];
s64 Ans,sum[ONE]; int get()
{
int res=,Q=; char c;
while( (c=getchar())< || c>)
if(c=='-')Q=-;
if(Q) res=c-;
while((c=getchar())>= && c<=)
res=res*+c-;
return res*Q;
} void Getf(int MaxN)
{
f[] = ;
for(int i=; i<=MaxN; i++)
{
if(!isp[i])
prime[++p_num] = i, f[i] = (-(s64)i*i%MOD+i+MOD)%MOD;
for(int j=; j<=p_num, i*prime[j]<=MaxN; j++)
{
isp[i * prime[j]] = ;
if(i % prime[j] == )
{
f[i * prime[j]] = (s64)f[i] * prime[j] % MOD;
break;
}
f[i * prime[j]] = (s64)f[i] * f[prime[j]] % MOD;
}
}
for(int i=; i<=MaxN; i++)
sum[i] = (sum[i-] + f[i]) % MOD;
} s64 Sum(int n,int m)
{
return ((s64)n*(n+)/%MOD) * ((s64)m*(m+)/%MOD) % MOD;
} void Solve()
{
n=get(); m=get();
if(n > m) swap(n,m);
Ans = ;
for(int i=, j=; i<=n; i=j+)
{
j = min(n/(n/i), m/(m/i));
Ans += Sum(n/i,m/i) * ((s64)sum[j] - sum[i-] + MOD) % MOD;
Ans %= MOD;
}
printf("%lld\n",Ans);
} int main()
{
Getf(ONE-);
T=get();
while(T--)
Solve();
}
【BZOJ2693】jzptab [莫比乌斯反演]的更多相关文章
- BZOJ2693: jzptab(莫比乌斯反演)
Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 2068 Solved: 834[Submit][Status][Discuss] Descripti ...
- bzoj2693 jzptab 莫比乌斯反演|题解
Description Input 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M Output T行 每行一个整数 表示第i组数据的结果 Sample Input 1 4 5 ...
- 【bzoj2693】jzptab 莫比乌斯反演+线性筛
题目描述 输入 一个正整数T表示数据组数 接下来T行 每行两个正整数 表示N.M 输出 T行 每行一个整数 表示第i组数据的结果 样例输入 1 4 5 样例输出 122 题解 莫比乌斯反演+线性筛 由 ...
- [Luogu P1829] [国家集训队]Crash的数字表格 / JZPTAB (莫比乌斯反演)
题面 传送门:洛咕 Solution 调到自闭,我好菜啊 为了方便讨论,以下式子\(m>=n\) 为了方便书写,以下式子中的除号均为向下取整 我们来颓柿子吧qwq 显然,题目让我们求: \(\l ...
- 【BZOJ】2693: jzptab 莫比乌斯反演
[题意]2154: Crash的数字表格 莫比乌斯反演,多组询问,T<=10000. [算法]数论(莫比乌斯反演) [题解]由上一题, $ans=\sum_{g\leq min(n,m)}g\s ...
- BZOJ 2693: jzptab [莫比乌斯反演 线性筛]
2693: jzptab Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1194 Solved: 455[Submit][Status][Discu ...
- BZOJ 2693: jzptab( 莫比乌斯反演 )
速度居然#2...目测是因为我没用long long.. 求∑ lcm(i, j) (1 <= i <= n, 1 <= j <= m) 化简之后就只须求f(x) = x∑u( ...
- luoguP1829 [国家集训队]Crash的数字表格 / JZPTAB(莫比乌斯反演)
题意 注:默认\(n\leqslant m\). 所求即为:\(\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}lcm(i,j)\) 因为\(i*j=\gcd(i, ...
- [国家集训队]Crash的数字表格 / JZPTAB 莫比乌斯反演
---题面--- 题解: $$ans = \sum_{i = 1}^{n}\sum_{j = 1}^{m}{\frac{ij}{gcd(i, j)}}$$ 改成枚举d(设n < m) $$ans ...
随机推荐
- c# 委托初窥
1.委托可以把方法当作参数在另一个方法中传递和调用 ,委托是方法的快捷方式. 2.委托是一个类. private void BeginSocketThread() { try { IPEndPoint ...
- ejabberd学习2
1.ejabberd监听多个端口 每个网络连接进来,ejabberd都会使用一个进程来负责这个连接的数据处理.原理跟Joe Armstrong的<Erlang程序设计>中的并行服务器一样, ...
- Jenkins系列-Jenkins初始化配置
初始化 访问,如:127.0.0.1:8088/Jenkins 第一次要求输入密码,初始密码在文件中查看. 执行以下命令查看 $ cat ${USER_HOME}\.jenkins\secrets\i ...
- phpcms 本地环境调试缓慢 解决办法
用记事本打开host文件,(文件位置,windows下一般在路径C:\Windows\System32\drivers\etc下)找到#127.0.0.1 localhost 这一句 去掉 ...
- vue-cli2使用cdn方式引入cytoscape
1. index.html头部引用 <script src="https://cdnjs.cloudflare.com/ajax/libs/cytoscape/3.2.19/cytos ...
- query 获取本身的HTML
<div class="test"><p>hello,你好!</p></div> <script> $(".t ...
- 【Python】python基础_代码编写注意事项
1. 说明使用的编译方式 1 #!/usr/bin/python 2. 说明字符编码方式 1 #coding=utf-8 3. print 默认输出是换行的,如果要实现不换行需要在变量末尾加上逗号 # ...
- hadoop 使用map将SequenFile里的小文件解压出来
上例中将HDFS里小文件通过mapper压缩到一个文件中,本例将这些小文件解压出来. mapreduce可以按SequenceFile的key进行分片. 1.mapper public class M ...
- CentOS ACL
ACL:访问控制列表(Access Control List). 一般来说权限是针对某一类用户设置的.例如:一个文件只有拥有者.组.其他用户三种设置方式,如果希望对某个指定的用户进行单独的权限控制,就 ...
- [NOIP2012]疫情控制 贪心 二分
题面:[NOIP2012]疫情控制 题解: 大体思路很好想,但是有个细节很难想QAQ 首先要求最大时间最小,这种一般都是二分,于是我们二分一个时间,得到一个log. 然后发现一个军队,越往上走肯定可以 ...