传送门https://lydsy.com/JudgeOnline/problem.php?id=4036

Description

刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数字,与你手上的数字进行或(c++,c的|,pascal

的or)操作。选择数字i的概率是p[i]。保证0<=p[i]<=1,Σp[i]=1问期望多少秒后,你手上的数字变成2^n-1。

Input

第一行输入n表示n个元素,第二行输入2^n个数,第i个数表示选到i-1的概率

Output

仅输出一个数表示答案,绝对误差或相对误差不超过1e-6即可算通过。如果无解则要输出INF

Sample Input

2
0.25 0.25 0.25 0.25

Sample Output

2.6666666667

Solution

\(\min-\max\)容斥套路题。

设\(\min\{S\}\)表示\(S\)最早出现的元素出现时间的期望,\(\max\{S\}\)同理。

那么有:

\[\max\{S\}=\sum_{T\subseteq S}(-1)^{|T|+1}\min\{T\}
\]

考虑怎么算\(\min\),根据定义,有:

\[\min\{S\}=\frac{1}{\sum_{S\subseteq T}p(T)}
\]

但是这个玩意不是很好算,有一个很巧妙的想法就是正难则反,设\(x=S\oplus(2^n-1)\),也就是\(S\)的补集,那么我们可以枚举\(x\)的子集,剩下没枚举到的就是分母要枚举的东西。

那么快速处理子集和可以用\(fwt\)来实现,具体的代码就很短了。

#include<bits/stdc++.h>
using namespace std; void read(int &x) {
x=0;int f=1;char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-f;
for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';x*=f;
} void print(int x) {
if(x<0) putchar('-'),x=-x;
if(!x) return ;print(x/10),putchar(x%10+48);
}
void write(int x) {if(!x) putchar('0');else print(x);putchar('\n');} #define lf double const int maxn = 2e6+10;
const lf eps = 1e-8; int m,n;
lf p[maxn]; void fwt(lf *r) {
for(int i=1;i<n;i<<=1)
for(int j=0;j<n;j+=i<<1)
for(int k=0;k<i;k++)
r[i+j+k]+=r[j+k];
} int main() {
read(m),n=1<<m;
for(int i=0;i<n;i++) scanf("%lf",&p[i]);
fwt(p);lf ans=0;
for(int i=1;i<n;i++) if(1.0-p[i^(n-1)]>eps) ans+=1.0/(1.0-p[i^(n-1)])*(lf)(__builtin_popcount(i)&1?1:-1);
for(int i=0;i<m;i++) if(1.0-p[(1<<i)^(n-1)]<eps) return puts("INF"),0;
printf("%lf\n",ans);
return 0;
}

[BZOJ4036] [HAOI2015]按位或的更多相关文章

  1. BZOJ4036 [HAOI2015]按位或 FWT

    原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ4036.html 题目传送门 - BZOJ4036 题意 刚开始你有一个数字 $0$ ,每一秒钟你会随机 ...

  2. BZOJ4036 HAOI2015按位或(概率期望+容斥原理)

    考虑min-max容斥,改为求位集合内第一次有位变成1的期望时间.求出一次操作选择了S中的任意1的概率P[S],期望时间即为1/P[S]. 考虑怎么求P[S].P[S]=∑p[s] (s&S& ...

  3. BZOJ4036 [HAOI2015]按位或 【minmax容斥 + 期望 + FWT】

    题目链接 BZOJ4036 题解 好套路的题啊,,, 我们要求的,实际上是一个集合\(n\)个\(1\)中最晚出现的\(1\)的期望时间 显然\(minmax\)容斥 \[E(max\{S\}) = ...

  4. bzoj4036 [HAOI2015]按位或 状压DP + MinMax 容斥

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4036 题解 变成 \(2^n-1\) 的意思显然就是每一个数位都出现了. 那么通过 MinMa ...

  5. 【BZOJ4036】[HAOI2015]按位或 FWT

    [BZOJ4036][HAOI2015]按位或 Description 刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数字,与你手上的数字进行或(c++,c的|,pascal的or ...

  6. bzoj4036 / P3175 [HAOI2015]按位或

    bzoj4036 / P3175 [HAOI2015]按位或 是一个 min-max容斥 的板子题. min-max容斥 式子: $ \displaystyle max(S) = \sum_{T\su ...

  7. 【BZOJ4036】按位或(Min-Max容斥,FWT)

    [BZOJ4036]按位或(Min-Max容斥,FWT) 题面 BZOJ 洛谷 题解 很明显直接套用\(min-max\)容斥. 设\(E(max\{S\})\)表示\(S\)中最晚出现元素出现时间的 ...

  8. [BZOJ 4036][HAOI2015]按位或

    4036: [HAOI2015]按位或 Time Limit: 10 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 746  Solved: 4 ...

  9. [luogu 3175] [HAOI2015]按位或(min-max容斥+高维前缀和)

    [luogu 3175] [HAOI2015]按位或 题面 刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数字,与你手上的数字进行按位或运算.问期望多少秒后,你手上的数字变成2^n ...

随机推荐

  1. LeetCode: 61. Rotate List(Medium)

    1. 原题链接 https://leetcode.com/problems/rotate-list/description/ 2. 题目要求 给出一个链表的第一个结点head和正整数k,然后将从右侧开 ...

  2. Ubuntu配置IP

    Ubuntu网络配置的常用系统,于是我学习研究了Ubuntu网络配置,在这里对大家详细介绍下Ubuntu网络配置应用,希望对大家有用Ubuntu网络配置包含了非常好的翻译和容易使用的架构./etc/n ...

  3. Http接口系列:如何提高Http接口用例的数据稳定性

    此文已由作者王婷英授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 为了尽可能多的释放手工测试,提高测试效率,我们都会想到使用自动化测试,如http接口自动化测试.doubbo ...

  4. libevent学习三(Getting an event_base)

    1.一个event_base持有了一系列的事件,并监控和决定哪些事件需要激活, 2.每一个event_base背后都有一个支持其工作的方法(诸如select,poll,epoll,kquene...) ...

  5. 初识c++模板元编程

    模板元编程(Template metaprogramming,简称TMP)是编译器内执行的程序,编译器读入template,编译输出的结果再与其他源码一起经过普通编译过程生成目标文件.通俗来说,普通运 ...

  6. JAVA日志框架概述

            日志用来记录应用的运行状态以及一些关键业务信息,其重要性不言而喻,通常我们借助于现有的日志框架完成日志输出.目前开源的日志框架很多,常见的有log4j.logback等,有时候我们还会 ...

  7. OSG-交互

    本文转至http://www.cnblogs.com/shapherd/archive/2010/08/10/osg.html 作者写的比较好,再次收藏,希望更多的人可以看到这个文章 互联网是是一个相 ...

  8. 使用InstallShield-Limited-Edition制作安装包

    1.打开此网站,进行注册,获取序列码以及下载InstallShield-Limited-Edition 2.安装完成之后,打开VisualStudio,新建项目 3.填写基本应用信息 4.配置相关信息 ...

  9. Python常用函数--return 语句

    在Python教程中return 语句是函数中常用的一个语句.return 语句用于从函数中返回,也就是中断函数.我们也可以选择在中断函数时从函数中返回一个值.案例(保存为 function_retu ...

  10. VT-x VT-d 虚拟化在win10中的问题

    win10真的是非常非常非常非常非常非常非常非常非常非常坑坑坑坑坑坑坑坑坑坑坑坑坑坑坑坑!!!!!! 自带虚拟Buff不说,我不用竟然会有冲突!!!! 一度让我怀疑,我的CPU VT-x坏掉了!!! ...