Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 12817   Accepted: 3343

Description

You are to write a program that has to decide whether a given line segment intersects a given rectangle.

An example: 
line: start point: (4,9) 
end point: (11,2) 
rectangle: left-top: (1,5) 
right-bottom: (7,1)

 
Figure 1: Line segment does not intersect rectangle

The line is said to intersect the rectangle if the line and the rectangle have at least one point in common. The rectangle consists of four straight lines and the area in between. Although all input values are integer numbers, valid intersection points do not have to lay on the integer grid.

Input

The input consists of n test cases. The first line of the input file contains the number n. Each following line contains one test case of the format: 
xstart ystart xend yend xleft ytop xright ybottom

where (xstart, ystart) is the start and (xend, yend) the end point of the line and (xleft, ytop) the top left and (xright, ybottom) the bottom right corner of the rectangle. The eight numbers are separated by a blank. The terms top left and bottom right do not imply any ordering of coordinates.

Output

For each test case in the input file, the output file should contain a line consisting either of the letter "T" if the line segment intersects the rectangle or the letter "F" if the line segment does not intersect the rectangle.

Sample Input

1
4 9 11 2 1 5 7 1

Sample Output

F

Source

题意:给一条线段,然后是一个矩形,问线段是否与矩形相交
    kuangbin模版
#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <string.h>
#include <cmath>
#define eps 1e-8
#define maxn 100
using namespace std;
int sgn(double x)
{
if(abs(x) < eps) return ;
if(x<) return -;
else return ;
}
struct Point
{
double x;
double y;
Point(){}
Point(double _x,double _y)
{
x = _x;
y = _y;
}
Point operator -(const Point &a) const
{
return Point(x-a.x,y-a.y);
}
Point operator + (const Point &a) const
{
return Point(x+a.x,y+a.y);
}
double operator *(const Point &a) const
{
return x*a.x+y*a.y;
}
double operator ^(const Point &a) const
{
return x*a.y-y*a.x;
}
};
struct Line
{
Point s;
Point e;
Line(){}
Line(Point _s,Point _e)
{
s = _s;
e = _e;
}
};
///判断线段相交
bool inter(Line l1,Line l2)
{
return
max(l1.s.x,l1.e.x) >= min(l2.s.x,l2.e.x) &&
max(l2.s.x,l2.e.x) >= min(l1.s.x,l1.e.x) &&
max(l1.s.y,l1.e.y) >= min(l2.s.y,l2.e.y) &&
max(l2.s.y,l2.e.y) >= min(l1.s.y,l1.e.y) &&
sgn((l2.s-l1.e)^(l1.s-l1.e))*sgn((l2.e-l1.e)^(l1.s-l1.e)) <= &&
sgn((l1.s-l2.e)^(l2.s-l2.e))*sgn((l1.e-l2.e)^(l2.s-l2.e)) <=;
}
///判断直线和线段是否相交
bool seg_inter_line(Line l1,Line l2)
{
return sgn((l2.s-l1.e)^(l1.s-l1.e))*sgn((l2.e-l1.e)^(l1.s,l1.e)) <=;
}
bool Onseg(Point p,Line L)
{
return
sgn((L.s-p)^(L.e-p)) == &&
sgn((p.x-L.s.x)*(p.x-L.e.x)) <= &&
sgn((p.y-L.s.y)*(p.y-L.e.y)) <= ;
}
int inConvexpoly(Point a,Point p[],int n)
{
for(int i=;i<n;i++)
{
if(sgn((p[i]-a)^(p[(i+)%n]-a)) < ) return -;
else if(Onseg(a,Line(p[i],p[(i+)%n]))) return ;
}
return ;
}
int main()
{
//freopen("in.txt","r",stdin);
int T;
scanf("%d",&T);
while(T--)
{
Point s;
Point e;
double x1,y1,x2,y2;
scanf("%lf %lf %lf %lf %lf %lf %lf %lf",&s.x,&s.y,&e.x,&e.y,&x1,&y1,&x2,&y2);
if(x1 > x2) swap(x1,x2);
if(y1 > y2) swap(y1,y2);
Point p[];
Line L = Line(s,e);
p[] = Point(x1,y1);
p[] = Point(x2,y1);
p[] = Point(x2,y2);
p[] = Point(x1,y2);
if(inter(L,Line(p[],p[])))
{
printf("T\n");
continue;
}
else if(inter(L,Line(p[],p[])))
{
printf("T\n");
continue;
}
else if(inter(L,Line(p[],p[])))
{
printf("T\n");
continue;
}
else if(inter(L,Line(p[],p[])))
{
printf("T\n");
continue;
}
else if(inConvexpoly(L.s,p,)>= || inConvexpoly(L.e,p,)>=)
{
printf("T\n");
continue;
}
else
printf("F\n");
}
return ;
}

POJ-1410的更多相关文章

  1. 线段和矩形相交 POJ 1410

    // 线段和矩形相交 POJ 1410 // #include <bits/stdc++.h> #include <iostream> #include <cstdio& ...

  2. POJ 1410 Intersection (计算几何)

    题目链接:POJ 1410 Description You are to write a program that has to decide whether a given line segment ...

  3. poj 1410 线段相交判断

    http://poj.org/problem?id=1410 Intersection Time Limit: 1000MS   Memory Limit: 10000K Total Submissi ...

  4. [POJ 1410] Intersection(线段与矩形交)

    题目链接:http://poj.org/problem?id=1410 Intersection Time Limit: 1000MS   Memory Limit: 10000K Total Sub ...

  5. POJ 1410 Intersection --几何,线段相交

    题意: 给一条线段,和一个矩形,问线段是否与矩形相交或在矩形内. 解法: 判断是否在矩形内,如果不在,判断与四条边是否相交即可.这题让我发现自己的线段相交函数有错误的地方,原来我写的线段相交函数就是单 ...

  6. 简单几何(线段相交) POJ 1410 Intersection

    题目传送门 题意:一个矩形和一条线段,问是否有相交 分析:考虑各种情况.坑点:给出的矩形的两个端点是无序的,还有线段完全在矩形内也算相交 /****************************** ...

  7. POJ 1410 Intersection(计算几何)

    题目大意:题目意思很简单,就是说有一个矩阵是实心的,给出一条线段,问线段和矩阵是否相交解题思路:用到了线段与线段是否交叉,然后再判断线段是否在矩阵里面,这里要注意的是,他给出的矩阵的坐标明显不是左上和 ...

  8. POJ 1410 Intersection(判断线段交和点在矩形内)

    Intersection Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 9996   Accepted: 2632 Desc ...

  9. Intersection - POJ 1410(线段与矩形是否相交)

    题目大意:给一个线段和一个矩形,判断线段是否和矩形有公共点.   分析:用矩形的四个边当线段判断与所给的线段是否有交点,需要注意的是给的矩形是不标准的,需要自己转换,还需要注意线段有可能在矩形内部. ...

  10. poj 1410 计算几何

    /** 注意: 千万得小心..就因为一个分号,调了一个晚上... **/ #include <iostream> #include <algorithm> using name ...

随机推荐

  1. vim 打开中文乱码

    [root@yu ~]# find / -name vimrc/etc/vimrc [root@yu ~]# vim /etc/vimrc set fileencodings=utf-8,gb2312 ...

  2. Django ORM 查询

    过滤器 过滤器 作用 all() 查出所有行 filter() 可以添加过滤条件 order_by() 查出所有数据,如果有参数则按参数排序,参数是字符串 ,如:"-username&quo ...

  3. bzoj 3580 冒泡排序 乱搞+思维

    冒泡排序 Time Limit: 15 Sec  Memory Limit: 256 MBSubmit: 243  Solved: 108[Submit][Status][Discuss] Descr ...

  4. 手脱ACProtect V1.4X(有Stolen Code)之补区段

    首先需要说的是,这个壳是ximo大神视频教程里的 0041F000 > pushad ; //程序入口点 0041F001 E8 call NgaMy.0041F007 0041F006 E8 ...

  5. Qt ------ 初始化构造函数参数,parent

    MainWindow::MainWindow(QWidget *parent) : QMainWindow(parent), ui(new Ui::MainWindow) { ui->setup ...

  6. TCP ------ TCP三次握手(建立连接)及其相关内容

    1.TCP客户端要连接到TCP服务器,需要经过三个过程: 以下是通过 Wireshark 抓取的三次握手数据包 → [SYN] Seq= Win= Len= MSS= → [SYN, ACK] Seq ...

  7. 编译skia静态库时,图片解码库无法注册的问题

    转载:http://www.cnblogs.com/imlucky/archive/2012/08/01/2617851.html 今天编译skia库,增加图片解码库时总是无效.按照此博客的方法修改后 ...

  8. Spring Boot 打包部署

    一.打包成jar并部署 1.工程--右键选择运行配置: 在Goals中输入: org.apache.maven.plugins:maven-jar-plugin:.RELEASE:repackage ...

  9. [洛谷P1338] 末日的传说

    洛谷题目链接:末日的传说 题目描述 只要是参加jsoi活动的同学一定都听说过Hanoi塔的传说:三根柱子上的金片每天被移动一次,当所有的金片都被移完之后,世界末日也就随之降临了. 在古老东方的幻想乡, ...

  10. 【设计模式】 模式PK:装饰模式VS适配器模式

    1.概述 装饰模式和适配器模式在通用类图上没有太多的相似点,差别比较大,但是它们的功能有相似的地方:都是包装作用,都是通过委托方式实现其功能.不同点是:装饰模式包装的是自己的兄弟类,隶属于同一个家族( ...