【Keras案例学习】 CNN做手写字符分类(mnist_cnn )
from __future__ import print_function
import numpy as np
np.random.seed(1337)
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten
from keras.layers import Convolution2D, MaxPooling2D
from keras.utils import np_utils
from keras import backend as K
batch_size = 128
nb_classes = 10
nb_epoch = 12
# 输入图像的维度,此处是mnist图像,因此是28*28
img_rows, img_cols = 28, 28
# 卷积层中使用的卷积核的个数
nb_filters = 32
# 池化层操作的范围
pool_size = (2,2)
# 卷积核的大小
kernel_size = (3,3)
# keras中的mnist数据集已经被划分成了60,000个训练集,10,000个测试集的形式,按以下格式调用即可
(X_train, y_train), (X_test, y_test) = mnist.load_data()
# 后端使用tensorflow时,即tf模式下,
# 会将100张RGB三通道的16*32彩色图表示为(100,16,32,3),
# 第一个维度是样本维,表示样本的数目,
# 第二和第三个维度是高和宽,
# 最后一个维度是通道维,表示颜色通道数
X_train = X_train.reshape(X_train.shape[0], img_rows, img_cols, 1)
X_test = X_test.reshape(X_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
# 将X_train, X_test的数据格式转为float32
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
# 归一化
X_train /= 255
X_test /= 255
# 打印出相关信息
print('X_train shape:', X_train.shape)
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples')
X_train shape: (60000, 28, 28, 1)
60000 train samples
10000 test samples
# 将类别向量(从0到nb_classes的整数向量)映射为二值类别矩阵,
# 相当于将向量用one-hot重新编码
Y_train = np_utils.to_categorical(y_train, nb_classes)
Y_test = np_utils.to_categorical(y_test, nb_classes)
# 建立序贯模型
model = Sequential()
# 卷积层,对二维输入进行滑动窗卷积
# 当使用该层为第一层时,应提供input_shape参数,在tf模式中,通道维位于第三个位置
# border_mode:边界模式,为"valid","same"或"full",即图像外的边缘点是补0
# 还是补成相同像素,或者是补1
model.add(Convolution2D(nb_filters, kernel_size[0] ,kernel_size[1],
border_mode='valid',
input_shape=input_shape))
model.add(Activation('relu'))
# 卷积层,激活函数是ReLu
model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1]))
model.add(Activation('relu'))
# 池化层,选用Maxpooling,给定pool_size,dropout比例为0.25
model.add(MaxPooling2D(pool_size=pool_size))
model.add(Dropout(0.25))
# Flatten层,把多维输入进行一维化,常用在卷积层到全连接层的过渡
model.add(Flatten())
# 包含128个神经元的全连接层,激活函数为ReLu,dropout比例为0.5
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dropout(0.5))
# 包含10个神经元的输出层,激活函数为Softmax
model.add(Dense(nb_classes))
model.add(Activation('softmax'))
# 输出模型的参数信息
model.summary()
# 配置模型的学习过程
model.compile(loss='categorical_crossentropy',
optimizer='adadelta',
metrics=['accuracy'])
____________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
====================================================================================================
convolution2d_3 (Convolution2D) (None, 26, 26, 32) 320 convolution2d_input_2[0][0]
____________________________________________________________________________________________________
activation_5 (Activation) (None, 26, 26, 32) 0 convolution2d_3[0][0]
____________________________________________________________________________________________________
convolution2d_4 (Convolution2D) (None, 24, 24, 32) 9248 activation_5[0][0]
____________________________________________________________________________________________________
activation_6 (Activation) (None, 24, 24, 32) 0 convolution2d_4[0][0]
____________________________________________________________________________________________________
maxpooling2d_2 (MaxPooling2D) (None, 12, 12, 32) 0 activation_6[0][0]
____________________________________________________________________________________________________
dropout_3 (Dropout) (None, 12, 12, 32) 0 maxpooling2d_2[0][0]
____________________________________________________________________________________________________
flatten_2 (Flatten) (None, 4608) 0 dropout_3[0][0]
____________________________________________________________________________________________________
dense_3 (Dense) (None, 128) 589952 flatten_2[0][0]
____________________________________________________________________________________________________
activation_7 (Activation) (None, 128) 0 dense_3[0][0]
____________________________________________________________________________________________________
dropout_4 (Dropout) (None, 128) 0 activation_7[0][0]
____________________________________________________________________________________________________
dense_4 (Dense) (None, 10) 1290 dropout_4[0][0]
____________________________________________________________________________________________________
activation_8 (Activation) (None, 10) 0 dense_4[0][0]
====================================================================================================
Total params: 600,810
Trainable params: 600,810
Non-trainable params: 0
____________________________________________________________________________________________________
# 训练模型
model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch=nb_epoch,
verbose=1, validation_data=(X_test, Y_test))
# 按batch计算在某些输入数据上模型的误差
score = model.evaluate(X_test, Y_test, verbose=0)
Train on 60000 samples, validate on 10000 samples
Epoch 1/12
60000/60000 [==============================] - 18s - loss: 0.3675 - acc: 0.8886 - val_loss: 0.0877 - val_acc: 0.9722
Epoch 2/12
60000/60000 [==============================] - 13s - loss: 0.1346 - acc: 0.9598 - val_loss: 0.0623 - val_acc: 0.9802
Epoch 3/12
60000/60000 [==============================] - 13s - loss: 0.1039 - acc: 0.9691 - val_loss: 0.0527 - val_acc: 0.9837
Epoch 4/12
60000/60000 [==============================] - 13s - loss: 0.0887 - acc: 0.9736 - val_loss: 0.0462 - val_acc: 0.9849
Epoch 5/12
60000/60000 [==============================] - 13s - loss: 0.0778 - acc: 0.9763 - val_loss: 0.0420 - val_acc: 0.9860
Epoch 6/12
60000/60000 [==============================] - 13s - loss: 0.0698 - acc: 0.9794 - val_loss: 0.0383 - val_acc: 0.9871
Epoch 7/12
60000/60000 [==============================] - 14s - loss: 0.0659 - acc: 0.9802 - val_loss: 0.0374 - val_acc: 0.9868
Epoch 8/12
60000/60000 [==============================] - 14s - loss: 0.0616 - acc: 0.9818 - val_loss: 0.0385 - val_acc: 0.9877
Epoch 9/12
60000/60000 [==============================] - 14s - loss: 0.0563 - acc: 0.9829 - val_loss: 0.0338 - val_acc: 0.9881
Epoch 10/12
60000/60000 [==============================] - 14s - loss: 0.0531 - acc: 0.9845 - val_loss: 0.0320 - val_acc: 0.9889
Epoch 11/12
60000/60000 [==============================] - 13s - loss: 0.0498 - acc: 0.9855 - val_loss: 0.0323 - val_acc: 0.9890
Epoch 12/12
60000/60000 [==============================] - 14s - loss: 0.0479 - acc: 0.9852 - val_loss: 0.0329 - val_acc: 0.9892
# 输出训练好的模型在测试集上的表现
print('Test score:', score[0])
print('Test accuracy:', score[1])
Test score: 0.032927570413
Test accuracy: 0.9892
【Keras案例学习】 CNN做手写字符分类(mnist_cnn )的更多相关文章
- 【Keras案例学习】 多层感知机做手写字符分类(mnist_mlp )
from __future__ import print_function # 导入numpy库, numpy是一个常用的科学计算库,优化矩阵的运算 import numpy as np np.ran ...
- 【深度学习系列】手写数字识别卷积神经--卷积神经网络CNN原理详解(一)
上篇文章我们给出了用paddlepaddle来做手写数字识别的示例,并对网络结构进行到了调整,提高了识别的精度.有的同学表示不是很理解原理,为什么传统的机器学习算法,简单的神经网络(如多层感知机)都可 ...
- 如何用卷积神经网络CNN识别手写数字集?
前几天用CNN识别手写数字集,后来看到kaggle上有一个比赛是识别手写数字集的,已经进行了一年多了,目前有1179个有效提交,最高的是100%,我做了一下,用keras做的,一开始用最简单的MLP, ...
- Android+TensorFlow+CNN+MNIST 手写数字识别实现
Android+TensorFlow+CNN+MNIST 手写数字识别实现 SkySeraph 2018 Email:skyseraph00#163.com 更多精彩请直接访问SkySeraph个人站 ...
- 第三节,TensorFlow 使用CNN实现手写数字识别(卷积函数tf.nn.convd介绍)
上一节,我们已经讲解了使用全连接网络实现手写数字识别,其正确率大概能达到98%,这一节我们使用卷积神经网络来实现手写数字识别, 其准确率可以超过99%,程序主要包括以下几块内容 [1]: 导入数据,即 ...
- 深度学习之 mnist 手写数字识别
深度学习之 mnist 手写数字识别 开始学习深度学习,先来一个手写数字的程序 import numpy as np import os import codecs import torch from ...
- 用pytorch做手写数字识别,识别l率达97.8%
pytorch做手写数字识别 效果如下: 工程目录如下 第一步 数据获取 下载MNIST库,这个库在网上,执行下面代码自动下载到当前data文件夹下 from torchvision.dataset ...
- MNIST手写数字分类simple版(03-2)
simple版本nn模型 训练手写数字处理 MNIST_data数据 百度网盘链接:https://pan.baidu.com/s/19lhmrts-vz0-w5wv2A97gg 提取码:cgnx ...
- Tensorflow-线性回归与手写数字分类
线性回归 步骤 构造线性回归数据 定义输入层 设计神经网络中间层 定义神经网络输出层 计算二次代价函数,构建梯度下降 进行训练,获取预测值 画图展示 代码 import tensorflow as t ...
随机推荐
- Java反编译工具Jad及插件JadClipse配置教程
Jad是一个Java的一个反编译工具,和eclipse的插件JadClipse,二者结合可以方便的在eclipse中查看class文件的源代码. 下面介绍一下配置: 下载JadClipse,http: ...
- 手把手带你理解style
在写代码的时候,经常遇到自定义的style,有的用来设置属性,有的用来设置主题,搞的自己云里雾里,因此在心底暗暗发誓,等到空闲的时候,一定好好学学android中的style的究竟是个什么东西,到底有 ...
- ListView实现分页加载(二)实现底布局
上一篇中,我们搭建好了一个Demo.没有阅读的可以点击下面的链接: http://www.cnblogs.com/fuly550871915/p/4866929.html 在这一篇中,我们将实现Lis ...
- virtualbox 安装 mac os x lion 10.7实现全屏显示!
1. 启动Virtual Box虚拟机,在虚拟机里编辑 /Library/Preferences/SystemConfiguration/com.apple.Boot.plist,找到 <dic ...
- 第八章.Spring MVC
基于MyEclipse开发 工程结构: 所使用到的jar: 代码: FruitControllerTest.java public class FruitControllerTest implemen ...
- ASP.NET Web API编程——客户端调用
可以使用HttpClient这个调用Web API,下面是HttpClient的定义,列举了一些常用的方法,其中还有一些没有列举,包括重载的方法. public class HttpClient : ...
- 二十一、IntelliJ IDEA 控制台输出中文乱码问题的解决方法
首先,找到 IntelliJ IDEA 的安装目录,进入bin目录下,定位到idea.vmoptions文件,如下图所示: 双击打开idea.vmoptions文件,如下图所示: 然后,在其中追加-D ...
- 浅谈DB2在线分析处理函数
最近碰到一个测试需求,使用到了在线分析处理(OLAP),现总结记录一下,也希望能帮到有相关问题的朋友. 1. 测试环境是DB2,通过ETL(数据抽取,数据转换,数据加载)技术将数据源数据加载到目标数据 ...
- oracle之DQL
一.单表查询 语法:select * from table where 条件 group by 分组 having 过滤分组 order by 排序 --查询平均工资低于2000的部门的最大工资和平均 ...
- RMAN_PIPE
涉及的dbms_pipe包中的过程和函数:(1)PACK_MESSAGE Procedures用途:Builds message in local buffer(2)SEND_MESSAGE Func ...