BZOJ 4361 isn 容斥+dp+树状数组
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4361
题意概述:
给出一个长度为N的序列A(A1,A2...AN)。如果序列A不是非降的,你必须从中删去一个数,重复这一操作,直到A非降为止。求有多少种不同的操作方案,答案模10^9+7。
N<=2000.
分析:
首先手算一下样例确定一下题意,不同的方案实际上就是删除数字的位置的不同排列。
当手算答案的时候可以发现我们可以把答案按照最终序列的长度分类。看题目的样子可以搜索但是怎么都弄不出一个子问题来构造方程,答案又可以分类,于是考虑一下容斥。
首先我们求出f(x)表示长度为x的非降子序列的数量(可以dp搞定,用个树状数组优化一下),然后将其意义令g(x)表示得到长度为x的非降子序列的合法方案数。
我们观察一下这两个东西:
g(N) = f(N)
g(N-1) = f(N-1) - N*g(N) = f(N-1) - N*f(N)
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cmath>
#include<queue>
#include<set>
#include<map>
#include<vector>
#include<cctype>
using namespace std;
const int maxn=;
const int mo=; int N,A[maxn],rank[maxn],f[maxn][maxn],g[maxn],J[maxn];
struct Binary_Index_Tree{
static const int msz=;
int c[msz],n;
Binary_Index_Tree(){
memset(c,,sizeof(c)); n=;
}
void update(int i,int v){
while(i<=n) c[i]=(c[i]+v)%mo,i+=i&(-i);
}
int query(int i){
int re=;
while(i) re=(re+c[i])%mo,i-=i&(-i);
return re;
}
}bit[maxn]; bool nega;
void _scanf(int &x)
{
x=,nega=;
char ch=getchar();
while((ch<''||ch>'')&&ch!='-') ch=getchar();
if(ch=='-') nega=,ch=getchar();
while(ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
if(nega) x=-x;
}
void data_in()
{
_scanf(N);
for(int i=;i<=N;i++) _scanf(A[i]);
}
void work()
{
memcpy(rank,A,sizeof(A));
sort(rank+,rank+N+);
int cnt=unique(rank+,rank+N+)-rank-;
for(int i=;i<=N;i++) bit[i].n=cnt;
for(int i=;i<=N;i++)
A[i]=lower_bound(rank+,rank+cnt+,A[i])-rank;
for(int i=;i<=N;i++){
f[i][]=;
for(int j=;j<=i;j++)
f[i][j]=(f[i][j]+bit[j-].query(A[i]))%mo;
for(int j=;j<=i;j++)
bit[j].update(A[i],f[i][j]);
}
for(int i=;i<=N;i++)
for(int j=;j<=i;j++) g[j]=(g[j]+f[i][j])%mo;
J[]=;
for(int i=;i<=N;i++) J[i]=1ll*i*J[i-]%mo;
for(int i=;i<=N;i++) g[i]=1ll*g[i]*J[N-i]%mo;
for(int i=;i<N;i++) g[i]=(g[i]-1ll*g[i+]*(i+)%mo+mo)%mo;
int ans=;
for(int i=;i<=N;i++) ans=(ans+g[i])%mo;
printf("%d\n",ans);
}
int main()
{
data_in();
work();
return ;
}
BZOJ 4361 isn 容斥+dp+树状数组的更多相关文章
- [CF1086E]Beautiful Matrix(容斥+DP+树状数组)
给一个n*n的矩阵,保证:(1)每行都是一个排列 (2)每行每个位置和上一行对应位置不同.求这个矩阵在所有合法矩阵中字典序排第几.考虑类似数位DP的做法,枚举第几行开始不卡限制,那么显然之前的行都和题 ...
- BZOJ.4553.[HEOI2016&TJOI2016]序列(DP 树状数组套线段树/二维线段树(MLE) 动态开点)
题目链接:BZOJ 洛谷 \(O(n^2)\)DP很好写,对于当前的i从之前满足条件的j中选一个最大值,\(dp[i]=d[j]+1\) for(int j=1; j<i; ++j) if(a[ ...
- bzoj 1264 [AHOI2006]基因匹配Match(DP+树状数组)
1264: [AHOI2006]基因匹配Match Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 793 Solved: 503[Submit][S ...
- BZOJ 1264: [AHOI2006]基因匹配Match 树状数组+DP
1264: [AHOI2006]基因匹配Match Description 基因匹配(match) 卡卡昨天晚上做梦梦见他和可可来到了另外一个星球,这个星球上生物的DNA序列由无数种碱基排列而成(地球 ...
- 树形DP+树状数组 HDU 5877 Weak Pair
//树形DP+树状数组 HDU 5877 Weak Pair // 思路:用树状数组每次加k/a[i],每个节点ans+=Sum(a[i]) 表示每次加大于等于a[i]的值 // 这道题要离散化 #i ...
- 【bzoj2274】[Usaco2011 Feb]Generic Cow Protests dp+树状数组
题目描述 Farmer John's N (1 <= N <= 100,000) cows are lined up in a row andnumbered 1..N. The cows ...
- 奶牛抗议 DP 树状数组
奶牛抗议 DP 树状数组 USACO的题太猛了 容易想到\(DP\),设\(f[i]\)表示为在第\(i\)位时方案数,转移方程: \[ f[i]=\sum f[j]\;(j< i,sum[i] ...
- BZOJ.4361.isn(DP 树状数组 容斥)
题目链接 长度为\(i\)的不降子序列个数是可以DP求的. 用\(f[i][j]\)表示长度为\(i\),结尾元素为\(a_j\)的不降子序列个数.转移为\(f[i][j]=\sum f[i-1][k ...
- BZOJ 4361 isn | DP 树状数组
链接 BZOJ 4361 题面 给出一个长度为n的序列A(A1,A2...AN).如果序列A不是非降的,你必须从中删去一个数, 这一操作,直到A非降为止.求有多少种不同的操作方案,答案模10^9+7. ...
随机推荐
- ABAP开发顾问必备:SAP ABAP开发技术总结[转载]
转载自SAP师太技术博客,原文链接:http://www.cnblogs.com/jiangzhengjun/p/4260224.html 在原文上增加了链接,此文及此文的链接版权都归SAP师太所有. ...
- JSP/Servlet开发——第八章 JSTL和EL
1. EL表达式: ●需要EL表达式的原因: ◆在JSP中使用Java脚本的局限: 1).在JSP页面中嵌入大量的Java代码: 2).访问结构比较复杂的数据时代码烦琐,且经常需要强制类型转换: eg ...
- Python支付接口汇总大全(包含微信、支付宝等)
微信接口 wzhifuSDK- 由微信支付SDK 官方PHP Demo移植而来,v3.37下载地址 weixin_pay- 是一个简单的微信支付的接口 weixin_pay- 微信支付接口(V3.3. ...
- 搭建Jupyter Notebook服务器
昨天发了Jupyter的使用,补一篇Jupyter服务器的搭建~ 一.搭建Jupyter 1.安装 使用virtualenv建虚拟环境.在虚拟环境中安装jupyter.matplotlib等等需要的库 ...
- Python习题(分页显示)
class Page: def __init__(self, lst, pageSize): self.lst = lst # 数据 self.pageSize = pageSize # 每页显示多少 ...
- Java学习笔记十六:Java中的构造方法
Java中的构造方法 1.使用new+构造方法 创建一个新的对象: 2.构造方法是定义在Java类中的一个用来初始化对象的方法: 3.构造方法与类同名且没有返回值: 4.语法格式: public 构造 ...
- c指针学习
#include <stdio.h> void main() { int a1=10; int a2=11; int * pa1, * pa2; pa1 = &a1; pa2 = ...
- C语言实验报告(四)完全数
完全数,又称完美数或者完备数.是一些特殊的自然数.它所有的真因子的和,恰好等于它本身.编程找出1000以内的所有完全数,并输出该数成为完全数的因子. (例如6=1+2+3.按照6,its factor ...
- 北京Uber优步司机奖励政策(2月24日)
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...
- PHP中array_reduce()使用
array_reduce — 用回调函数迭代地将数组简化为单一的值 给定一个数组: $ar = array(1,2,3,4,5); 如果要求得这个数组中各个元素之和. 方法一. 很自然的用foreac ...