Description

近日,园长发现动物园中好吃懒做的动物越来越多了。例如企鹅,只会卖萌向游客要吃的。为了整治动物园的不良风气,让动物们凭自己的真才实学向游客要吃的,园长决定开设算法班,让动物们学习算法。

某天,园长给动物们讲解KMP算法。

园长:“对于一个字符串S,它的长度为L。我们可以在O(L)的时间内,求出一个名为next的数组。有谁预习了next数组的含义吗?”

熊猫:“对于字符串S的前i个字符构成的子串,既是它的后缀又是它的前缀的字符串中(它本身除外),最长的长度记作next[i]。”

园长:“非常好!那你能举个例子吗?”

熊猫:“例S为abcababc,则next[5]=2。因为S的前5个字符为abcab,ab既是它的后缀又是它的前缀,并且找不到一个更长的字符串满足这个性质。同理,还可得出next[1] = next[2] = next[3] = 0,next[4] = next[6] = 1,next[7] = 2,next[8] = 3。”

园长表扬了认真预习的熊猫同学。随后,他详细讲解了如何在O(L)的时间内求出next数组。

下课前,园长提出了一个问题:“KMP算法只能求出next数组。我现在希望求出一个更强大num数组一一对于字符串S的前i个字符构成的子串,既是它的后缀同时又是它的前缀,并且该后缀与该前缀不重叠,将这种字符串的数量记作num[i]。例如S为aaaaa,则num[4] = 2。这是因为S的前4个字符为aaaa,其中a和aa都满足性质‘既是后缀又是前缀’,同时保证这个后缀与这个前缀不重叠。而aaa虽然满足性质‘既是后缀又是前缀’,但遗憾的是这个后缀与这个前缀重叠了,所以不能计算在内。同理,num[1] = 0,num[2] = num[3] = 1,num[5] = 2。”

最后,园长给出了奖励条件,第一个做对的同学奖励巧克力一盒。听了这句话,睡了一节课的企鹅立刻就醒过来了!但企鹅并不会做这道题,于是向参观动物园的你寻求帮助。你能否帮助企鹅写一个程序求出num数组呢?

特别地,为了避免大量的输出,你不需要输出num[i]分别是多少,你只需要输出对1,000,000,007取模的结果即可。

Input

第1行仅包含一个正整数n ,表示测试数据的组数。随后n行,每行描述一组测试数据。每组测试数据仅含有一个字符串S,S的定义详见题目描述。数据保证S 中仅含小写字母。输入文件中不会包含多余的空行,行末不会存在多余的空格。

Output

包含 n 行,每行描述一组测试数据的答案,答案的顺序应与输入数据的顺序保持一致。对于每组测试数据,仅需要输出一个整数,表示这组测试数据的答案对 1,000,000,007 取模的结果。输出文件中不应包含多余的空行。

Sample Input

3
aaaaa
ab
abcababc

Sample Output

36
1
32

HINT

n≤5,L≤1,000,000

Solution

一开始读错题就很GG……
在求Next数组的时候顺便统计一个Cnt数组
Cnt[i]表示i这个位置可以有多少个相同的前后缀,可以包含[1,i]这个字符串
最后统计i对答案的贡献的时候,如果超过一半就直接跳Next数组往回。
自己看代码可能比看题解更好懂

Code

 #include<iostream>
#include<cstring>
#include<cstdio>
#define N (1000000+1000)
#define MOD (1000000007)
using namespace std; int Num[N],Next[N],Cnt[N],len,T;
long long ans;
char s[N]; void Build_Next()
{
Next[]=-; Cnt[]=;
int k=-;
for (int i=; i<len; ++i)
{
while (k>- && s[k+]!=s[i])
k=Next[k];
if (s[k+]==s[i]) ++k;
Next[i]=k;
Cnt[i]=(k==-)?:Cnt[k]+;
}
} void Build_Num()
{
int k=-;
for (int i=; i<len; ++i)
{
while (k>- && (s[k+]!=s[i]))
k=Next[k];
if (s[k+]==s[i]) ++k;
while (k>=(i+)/) k=Next[k];
ans=ans*(Cnt[k]+)%MOD;
}
} int main()
{
scanf("%d",&T);
while (T--)
{
scanf("%s",s);
len=strlen(s); ans=;
Build_Next();
Build_Num();
printf("%lld\n",ans);
}
}

BZOJ3670:[NOI2014]动物园(KMP)的更多相关文章

  1. bzoj3670 [Noi2014]动物园——KMP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3670 第一次写KMP算法...又T又WA了半天... 1. num 数组表示包括其本身的前缀 ...

  2. BZOJ3670 [Noi2014]动物园 【KMP计数】

    3670: [Noi2014]动物园 Time Limit: 10 Sec  Memory Limit: 512 MB Submit: 3143  Solved: 1690 [Submit][Stat ...

  3. bzoj千题计划250:bzoj3670: [Noi2014]动物园

    http://www.lydsy.com/JudgeOnline/problem.php?id=3670 法一:KMP+st表 抽离nxt数组,构成一棵树 若nxt[i]=j,则i作为j的子节点 那么 ...

  4. [BZOJ3670] [NOI2014] 动物园 解题报告 (KMP)

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=3670 Description 近日,园长发现动物园中好吃懒做的动物越来越多了.例如企鹅, ...

  5. BZOJ3670 [Noi2014]动物园

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  6. BZOJ 3670: [Noi2014]动物园 [KMP]

    求这玩意: 对于字符串S的前i个字符构成的子串,既是它的后缀同时又是它的前缀,并且该后缀与该前缀不重叠,将这种字符串的数量记作num[i] 对1,000,000,007取模的结果 n≤5,L≤1,00 ...

  7. [NOI2014]动物园(kmp)

    题目 https://www.luogu.org/problemnew/show/P2375 做法 查找多少个前缀与后缀配对,其实就是\(fail\)树的深度 而不可重叠,其实\(i\)不可用的,\( ...

  8. BZOJ 3670 NOI2014 动物园 KMP+dp

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3670 题意概述:令num[i]表示字符串由1~i的字符形成的前缀中不相重叠的相同前后缀的数 ...

  9. P2375 [NOI2014]动物园 KMP

    好,暴力能拿$50pts\space qwq$ 暴力的思路就是一直跳$nxt[j]$,直到它的长度小于串的一半,然后开始计数,当然要接着跳$nxt[j]$ 正解:考虑没有长度要求的(不要求不重合)公共 ...

随机推荐

  1. 架构实战项目心得(九):后台服务工具ldap:统一用户中心ldap工具使用以及安装

    一.安装OpenLDAP 1.安装 yum -y install openldapopenldap-servers openldap-clients openldap-devel compat-ope ...

  2. Java 实例 - 标签(Label)

     Java 实例 Java 中的标签是为循环设计的,是为了在多重循环中方便的使用break 和coutinue . 以下实例当在循环中使用 break 或 continue 循环时跳到指定的标签处: ...

  3. [转].NET Core dotnet 命令大全

    本文转自:http://www.cnblogs.com/linezero/p/dotnet.html https://docs.microsoft.com/en-us/dotnet/articles/ ...

  4. SEO学习

    一.什么是SEO SEO是由英文Search Engine Optimization缩写而来, 中文意译为“搜索引擎优化”!SEO是指通过对网站进行站内优化(网站结构调整.网站内容建设.网站代码优化等 ...

  5. [javaEE] jsp入门

    Servlet写java代码很好,但是拼接html的时候,非常不方便 JSP可以在html中嵌套java代码,这样在展示的时候,就会比较方便 Tomcat帮我们把jsp的页面翻译成了Servlet去运 ...

  6. 一 NIO的概念

    Java NIO由下列几个核心部分组成: Channels(通道) Buffers(缓冲区) Asynchronous IO(异步IO) Channel 和 Buffer 基本上所有的IO在NIO中都 ...

  7. 谈谈我从工作中理解的CDN

    一.CDN定义 CDN的全称是Content Delivery Network,即内容分发网络.其基本思路是尽可能避开互联网上有可能影响数据传输速度和稳定性的瓶颈和环节,使内容传输的更快.更稳定.通过 ...

  8. 2018.10.26NOIP模拟赛解题报告

    心路历程 预计得分:\(100 + 100 + 70\) 实际得分:\(40 + 100 + 70\) 妈妈我又挂分了qwq..T1过了大样例就没管,直到临考试结束前\(10min\)才发现大样例是假 ...

  9. 移动端mate标签设置

    <meta name="viewport" content="width=device-width,height=device-height,initial-sca ...

  10. <Android 应用 之路> 百度地图API使用(1)

    简介 详情请看百度地图官方网站 http://lbsyun.baidu.com/index.php?title=androidsdk/guide/introduction 使用方式 申请密钥,针对移动 ...