矩阵乘法裸题..差分一下然后用矩阵乘法+快速幂就可以了.

---------------------------------------------------------------------------------

#include<cstdio>
#include<cstring>
#include<algorithm>
 
using namespace std;
 
const int maxn = 20;
 
typedef long long ll;
typedef int mat[maxn][maxn];
 
ll n, m;
int p, k, ans, sm;
int b[maxn], c[maxn];
mat Q, res, tmp;
 
inline void upd(int &x, int t) {
if((x += t) >= p) x -= p;
if(x < 0) x += p;
}
 
void Init() {
ans = sm = 0;
scanf("%d", &k);
for(int i = 0; i < k; i++)
scanf("%d", b + i);
for(int i = 0; i < k; i++)
scanf("%d", c + i);
scanf("%lld%lld%d", &m, &n, &p);
for(int i = 0; i < k; i++)
upd(sm, b[i]);
}
 
void makeMatrix() {
Q[0][0] = 1;
Q[1][0] = 0;
for(int i = 1; i <= k; i++)
Q[0][i] = Q[1][i] = c[i - 1];
for(int i = 2; i <= k; i++)
for(int j = 0; j <= k; j++)
Q[i][j] = (j + 1 == i);
for(int i = 0; i <= k; i++)
for(int j = 0; j <= k; j++)
res[i][j] = (i == j);
}
void Mult(mat &a, mat b) {
for(int i = 0; i <= k; i++)
for(int j = 0; j <= k; j++)
tmp[i][j] = 0;
for(int i = 0; i <= k; i++)
for(int v = 0; v <= k; v++)
for(int j = 0; j <= k; j++)
upd(tmp[i][j], ll(a[i][v]) * b[v][j] % p);
for(int i = 0; i <= k; i++)
for(int j = 0; j <= k; j++)
a[i][j] = tmp[i][j];
}
 
int calc(ll x) {
makeMatrix();
x -= k;
for(; x; x >>= 1, Mult(Q, Q))
if(x & 1) Mult(res, Q);
int ret = 0;
upd(ret, ll(res[0][0]) * sm % p);
for(int i = 1; i <= k; i++)
upd(ret, ll(res[0][i]) * b[k - i] % p);
return ret;
}
 
void Work() {
if(--m <= k) {
for(int i = 0; i < m; i++)
upd(ans, -c[i]);
} else
upd(ans, -calc(m));
upd(ans, calc(n));
printf("%d\n", ans);
}
 
int main() {
Init();
Work();
return 0;
}

---------------------------------------------------------------------------------

3231: [Sdoi2008]递归数列

Time Limit: 1 Sec  Memory Limit: 256 MB
Submit: 526  Solved: 229
[Submit][Status][Discuss]

Description

HINT

对于100%的测试数据:

1<= k<=15

1 <= m <= n <= 1018

Source

BZOJ 3231: [Sdoi2008]递归数列( 矩阵快速幂 )的更多相关文章

  1. bzoj 3231 [Sdoi2008]递归数列——矩阵乘法

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3231 矩阵乘法裸题. 1018是10^18.别忘了开long long. #include& ...

  2. BZOJ 3231: [Sdoi2008]递归数列 (JZYZOJ 1353) 矩阵快速幂

    http://www.lydsy.com/JudgeOnline/problem.php?id=3231   和斐波那契一个道理在最后加一个求和即可 #include<cstdio> #i ...

  3. bzoj 3231: [Sdoi2008]递归数列【矩阵乘法】

    今天真是莫名石乐志 一眼矩阵乘法,但是这个矩阵的建立还是挺有意思的,就是把sum再开一列,建成大概这样 然后记!得!开!long!long!! #include<iostream> #in ...

  4. HDU4549 M斐波那契数列 矩阵快速幂+欧拉函数+欧拉定理

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Sub ...

  5. POJ3070 斐波那契数列 矩阵快速幂

    题目链接:http://poj.org/problem?id=3070 题意就是让你求斐波那契数列,不过n非常大,只能用logn的矩阵快速幂来做了 刚学完矩阵快速幂刷的水题,POJ不能用万能头文件是真 ...

  6. hdu4549 M斐波那契数列 矩阵快速幂+快速幂

    M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在给出a, b, n,你能求出F[n]的 ...

  7. 洛谷P1962 斐波那契数列(矩阵快速幂)

    题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...

  8. BZOJ 2875: [Noi2012]随机数生成器( 矩阵快速幂 )

    矩阵快速幂...+快速乘就OK了 ----------------------------------------------------------------------------------- ...

  9. BZOJ 2326 数学作业(分段矩阵快速幂)

    实际上,对于位数相同的连续段,可以用矩阵快速幂求出最后的ans,那么题目中一共只有18个连续段. 分段矩阵快速幂即可. #include<cstdio> #include<iostr ...

随机推荐

  1. android开发之Animations的使用(二)

    android开发之Animations的使用(二) 本博文主要讲述的是android开发中的animation动画效果的使用,和上一篇博文不同的是,此次四种动画效果,主要使用的是xml文件实现的,提 ...

  2. ASP.NET MVC4 json序列化器

    ASP.NET MVC4中调用WEB API的四个方法 2012年06月07日00:05 it168网站原创 作者:廖煜嵘 编辑:景保玉 我要评论(0) [IT168技术]当今的软件开发中,设计软件的 ...

  3. HNU 12850 Garage

    长为H的格子里面放n个长为h的格子 最多会有n+1个空隙 要使每一个空隙长度都小于h (H-h*n)/(n+1)<h n>(H/h-1)/2 #include<bits/stdc++ ...

  4. css笔记:如何将一个页面平均分成四个部分?

    今天,我在刷面试题的时候,突然想到一道题:如何将一个页面平均分成四个部分(div)呢?其实难度也不大,于是直接上代码 <!DOCTYPE html> <html lang=" ...

  5. list 去重复

    两层遍历,如果后面的元素和前面的相同,就把后面的删除,达到去重复的目的. 比较的元素可以是list中含有的任意唯一性的元素. for(int x = 0;x < xglist.size()-1; ...

  6. C#去掉字符串中的汉字

    string str = "测试一下ilove中国so结束"; Regex reg = new Regex(@"[\u4e00-\u9fa5]"); Label ...

  7. node.js 中的全局对象

    /** * Created by Administrator on 2016/8/29. */ const http = require("http"); const hostna ...

  8. linux创建用户和组

    linux下创建用户(一) Linux 系统是一个多用户多任务的分时操作系统,任何一个要使用系统资源的用户,都必须首先向系统管理员申请一个账号,然后以这个账号的身份进入系统.用户的账号一方面可以帮助系 ...

  9. 浅谈print2flash的在线预览转换应用(原创)

    print2flash是一种在线预览转换工具,可以将doc.docx.xls.pdf.ppt等格式的文档转换成flash文件进行预览,因为之前使用的flash2paper只支持32为操作系统,不支持6 ...

  10. 已经包含了#include <atlcom.h> #include <comutil.h>还是报错

    在WTL工程的.h中 #include <atlbase.h>#include <atlcom.h>#include <atlcomcli.h>#include & ...