Problem B

Complete Tree Labeling!

Input: standard input

Output: standard output

Time Limit: 45 seconds

Memory Limit: 32 MB

A complete k-ary tree is a k-ary tree in which all leaves have same depth and all internal nodes have degree k. This k is also known as the branching factor of a tree. It is very easy to determine the number of nodes of such a tree. Given the depth and branching factor of such a tree, you will have to determine in how many different ways you can number the nodes of the tree so that the label of each node is less that that of its descendants. You should assume that for numbering a tree with N nodes you have the (1, 2, 3, N-1, N) labels available.

Input

The input file will contain several lines of input. Each line will contain two integers k and d. Here k is the branching factor of the complete k-arytree and d is the depth of the complete k-ary tree (k>0, d>0, k*d<=21).

Output

For each line of input, produce one line of output containing a round number, which is the number of ways the k-ary tree can be labeled, maintaining the constraints described above.

Sample Input:

2 2

10 1

Sample Output:

80

3628800

题意:k叉d层树最多组成几种搜索树。

思路:参考http://www.2cto.com/kf/201310/251470.html

代码:

#include <stdio.h>
#include <string.h>
#include <math.h> #define max(a,b) (a)>(b)?(a):(b)
#define min(a,b) (a)<(b)?(a):(b) const int MAXSIZE = 10000; struct bign {
int s[MAXSIZE];
bign () {memset(s, 0, sizeof(s));}
bign (int number) {*this = number;}
bign (const char* number) {*this = number;} void put();
bign mul(int d);
void del();
void init() { memset(s, 0, sizeof(s)); } bign operator = (char *num);
bign operator = (int num); bool operator < (const bign& b) const;
bool operator > (const bign& b) const { return b < *this; }
bool operator <= (const bign& b) const { return !(b < *this); }
bool operator >= (const bign& b) const { return !(*this < b); }
bool operator != (const bign& b) const { return b < *this || *this < b;}
bool operator == (const bign& b) const { return !(b != *this); } bign operator + (const bign& c);
bign operator * (const bign& c);
bign operator - (const bign& c);
int operator / (const bign& c);
bign operator / (int k);
bign operator % (const bign &c);
int operator % (int k);
void operator ++ ();
bool operator -- ();
}; bign f[25][25];
int node[25][25];
int n, m; bign c(int n, int m) {
bign ans = 1;
m = min(m, n - m);
for (int i = 0; i < m; i ++) {
bign save = (n - i);
ans = ans * save / (i + 1);
}
return ans;
} void init() {
int i, j, k;
for (i = 1; i <= 21; i ++) {
f[i][0] = 1; node[i][0] = 1;
for (j = 1; j <= 21 / i; j ++) {
f[i][j] = 1;
for (k = 0; k < i; k ++) {
node[i][j] = node[i][j - 1] * i + 1;
f[i][j] = f[i][j] * c(node[i][j] - 1 - k * node[i][j - 1], node[i][j - 1]) * f[i][j - 1];
}
}
}
} int main() {
init();
while (~scanf("%d%d", &n, &m)) {
f[n][m].put();
printf("\n");
}
return 0;
} bign bign::operator = (char *num) {
init();
s[0] = strlen(num);
for (int i = 1; i <= s[0]; i++)
s[i] = num[s[0] - i] - '0';
return *this;
} bign bign::operator = (int num) {
char str[MAXSIZE];
sprintf(str, "%d", num);
return *this = str;
} bool bign::operator < (const bign& b) const {
if (s[0] != b.s[0])
return s[0] < b.s[0];
for (int i = s[0]; i; i--)
if (s[i] != b.s[i])
return s[i] < b.s[i];
return false;
} bign bign::operator + (const bign& c) {
int sum = 0;
bign ans;
ans.s[0] = max(s[0], c.s[0]); for (int i = 1; i <= ans.s[0]; i++) {
if (i <= s[0]) sum += s[i];
if (i <= c.s[0]) sum += c.s[i];
ans.s[i] = sum % 10;
sum /= 10;
}
return ans;
} bign bign::operator * (const bign& c) {
bign ans;
ans.s[0] = 0; for (int i = 1; i <= c.s[0]; i++){
int g = 0; for (int j = 1; j <= s[0]; j++){
int x = s[j] * c.s[i] + g + ans.s[i + j - 1];
ans.s[i + j - 1] = x % 10;
g = x / 10;
}
int t = i + s[0] - 1; while (g){
++t;
g += ans.s[t];
ans.s[t] = g % 10;
g = g / 10;
} ans.s[0] = max(ans.s[0], t);
}
ans.del();
return ans;
} bign bign::operator - (const bign& c) {
bign ans = *this;
int i;
for (i = 1; i <= c.s[0]; i++) {
if (ans.s[i] < c.s[i]) {
ans.s[i] += 10;
ans.s[i + 1]--;;
}
ans.s[i] -= c.s[i];
} for (i = 1; i <= ans.s[0]; i++) {
if (ans.s[i] < 0) {
ans.s[i] += 10;
ans.s[i + 1]--;
}
} ans.del();
return ans;
} int bign::operator / (const bign& c) {
int ans = 0;
bign d = *this;
while (d >= c) {
d = d - c;
ans++;
}
return ans;
} bign bign::operator / (int k) {
bign ans;
ans.s[0] = s[0];
int num = 0;
for (int i = s[0]; i; i--) {
num = num * 10 + s[i];
ans.s[i] = num / k;
num = num % k;
}
ans.del();
return ans;
} int bign:: operator % (int k){
int sum = 0;
for (int i = s[0]; i; i--){
sum = sum * 10 + s[i];
sum = sum % k;
}
return sum;
} bign bign::operator % (const bign &c) {
bign now = *this;
while (now >= c) {
now = now - c;
now.del();
}
return now;
} void bign::operator ++ () {
s[1]++;
for (int i = 1; s[i] == 10; i++) {
s[i] = 0;
s[i + 1]++;
s[0] = max(s[0], i + 1);
}
} bool bign::operator -- () {
del();
if (s[0] == 1 && s[1] == 0) return false; int i;
for (i = 1; s[i] == 0; i++)
s[i] = 9;
s[i]--;
del();
return true;
} void bign::put() {
if (s[0] == 0)
printf("0");
else
for (int i = s[0]; i; i--)
printf("%d", s[i]);
} bign bign::mul(int d) {
s[0] += d;
int i;
for (i = s[0]; i > d; i--)
s[i] = s[i - d];
for (i = d; i; i--)
s[i] = 0;
return *this;
} void bign::del() {
while (s[s[0]] == 0) {
s[0]--;
if (s[0] == 0) break;
}
}

10247 - Complete Tree Labeling(递推高精度)的更多相关文章

  1. PKU 2506 Tiling(递推+高精度||string应用)

    题目大意:原题链接有2×1和2×2两种规格的地板,现要拼2×n的形状,共有多少种情况,首先要做这道题目要先对递推有一定的了解.解题思路:1.假设我们已经铺好了2×(n-1)的情形,则要铺到2×n则只能 ...

  2. 递推+高精度+找规律 UVA 10254 The Priest Mathematician

    题目传送门 /* 题意:汉诺塔问题变形,多了第四个盘子可以放前k个塔,然后n-k个是经典的汉诺塔问题,问最少操作次数 递推+高精度+找规律:f[k]表示前k放在第四个盘子,g[n-k]表示经典三个盘子 ...

  3. [luogu]P1066 2^k进制数[数学][递推][高精度]

    [luogu]P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻 ...

  4. [BZOJ1089][SCOI2003]严格n元树(递推+高精度)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1089 分析: 第一感觉可以用一个通式求出来,但是考虑一下很麻烦,不好搞的.很容易发现最 ...

  5. 【BZOJ】1002: [FJOI2007]轮状病毒 递推+高精度

    1002: [FJOI2007]轮状病毒 Description 给定n(N<=100),编程计算有多少个不同的n轮状病毒. Input 第一行有1个正整数n. Output 将编程计算出的不同 ...

  6. BZOJ 1002 FJOI2007 轮状病毒 递推+高精度

    题目大意:轮状病毒基定义如图.求有多少n轮状病毒 这个递推实在是不会--所以我选择了打表找规律 首先执行下面程序 #include<cstdio> #include<cstring& ...

  7. 递推 + 高精度 --- Tiling

    Tiling Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7264   Accepted: 3528 Descriptio ...

  8. 【BZOJ】1089: [SCOI2003]严格n元树(递推+高精度/fft)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1089 题意:求深度为d的n元树数目.(0<n<=32, 0<=d<=16) ...

  9. 递推+高精度 UVA 10497 Sweet Child Makes Trouble(可爱的孩子惹麻烦)

    题目链接 题意: n个物品全部乱序排列(都不在原来的位置)的方案数. 思路: dp[i]表示i个物品都乱序排序的方案数,所以状态转移方程.考虑i-1个物品乱序,放入第i个物品一定要和i-1个的其中一个 ...

随机推荐

  1. 去英国Savile Row 做件私人定制手工西装_GQ男士网

    去英国Savile Row 做件私人定制手工西装_GQ男士网 去英国Savile Row 做件私人定制手工西装

  2. python-面向对象(二)

    面向对象总结 面向对象是一种编程方式,此编程方式的实现是基于对 类 和 对象 的使用 类 是一个模板,模板中包装了多个“函数”供使用(可以讲多函数中公用的变量封装到对象中) 对象,根据模板创建的实例( ...

  3. 使用PHP实现请求响应和MySql访问

    在iOS开发当中经常需要使用来自后台的数据,所以使用一种很简便的写后台的方法. 首先,安装XAMPP,这是一个集成好的阿帕奇+MySQL环境,点击按钮即可开启服务,不需要进行任何环境配置. 然后,开启 ...

  4. go-vim配置

    一.环境准备: 系统环境说明: [root@docker golang]# cat /etc/redhat-release CentOS Linux release (Core) [root@dock ...

  5. asp.net word内容读取到页面

    1.添加Microsoft.Vbe.Interop.dll引用. 2.以下方法可以简单的读取到word文档文字内容,不包括图片.格式等. private string ReadWordFile(str ...

  6. 多关键字排序(里面有关于操作符(<<运算符 和 >>运算符 )的重载)

    一种排序 时间限制:3000 ms | 内存限制:65535 KB 难度:3   描述 现在有很多长方形,每一个长方形都有一个编号,这个编号可以重复:还知道这个长方形的宽和长,编号.长.宽都是整数:现 ...

  7. atan(正切函数)

    atan函数:返回数值的余切值 原型:double atan(double x) <pre name="code" class="cpp">#inc ...

  8. Scala基础类型与操作

    Scala基本类型及操作.程序控制结构 Scala基本类型及操作.程序控制结构 (一)Scala语言优势 自身语言特点: 纯面向对象编程的语言 函数式编程语言 函数式编程语言语言应该支持以下特性: 高 ...

  9. Python: how to public a model

    1, Create a folder fileFolder 2, create a file tester.py 3, create another file setup.py: The conten ...

  10. java调用C++ DLL库方法

    最近一个项目要开发网页端人脸识别项目,人脸识别的算法已经写好,是C++版,但是网页端要求使用Java后台,这就涉及到Java调用DLL的问题.经过查找,实现了一个简单的例子. 1.第一步,先在Java ...