Problem B

Complete Tree Labeling!

Input: standard input

Output: standard output

Time Limit: 45 seconds

Memory Limit: 32 MB

A complete k-ary tree is a k-ary tree in which all leaves have same depth and all internal nodes have degree k. This k is also known as the branching factor of a tree. It is very easy to determine the number of nodes of such a tree. Given the depth and branching factor of such a tree, you will have to determine in how many different ways you can number the nodes of the tree so that the label of each node is less that that of its descendants. You should assume that for numbering a tree with N nodes you have the (1, 2, 3, N-1, N) labels available.

Input

The input file will contain several lines of input. Each line will contain two integers k and d. Here k is the branching factor of the complete k-arytree and d is the depth of the complete k-ary tree (k>0, d>0, k*d<=21).

Output

For each line of input, produce one line of output containing a round number, which is the number of ways the k-ary tree can be labeled, maintaining the constraints described above.

Sample Input:

2 2

10 1

Sample Output:

80

3628800

题意:k叉d层树最多组成几种搜索树。

思路:参考http://www.2cto.com/kf/201310/251470.html

代码:

#include <stdio.h>
#include <string.h>
#include <math.h> #define max(a,b) (a)>(b)?(a):(b)
#define min(a,b) (a)<(b)?(a):(b) const int MAXSIZE = 10000; struct bign {
int s[MAXSIZE];
bign () {memset(s, 0, sizeof(s));}
bign (int number) {*this = number;}
bign (const char* number) {*this = number;} void put();
bign mul(int d);
void del();
void init() { memset(s, 0, sizeof(s)); } bign operator = (char *num);
bign operator = (int num); bool operator < (const bign& b) const;
bool operator > (const bign& b) const { return b < *this; }
bool operator <= (const bign& b) const { return !(b < *this); }
bool operator >= (const bign& b) const { return !(*this < b); }
bool operator != (const bign& b) const { return b < *this || *this < b;}
bool operator == (const bign& b) const { return !(b != *this); } bign operator + (const bign& c);
bign operator * (const bign& c);
bign operator - (const bign& c);
int operator / (const bign& c);
bign operator / (int k);
bign operator % (const bign &c);
int operator % (int k);
void operator ++ ();
bool operator -- ();
}; bign f[25][25];
int node[25][25];
int n, m; bign c(int n, int m) {
bign ans = 1;
m = min(m, n - m);
for (int i = 0; i < m; i ++) {
bign save = (n - i);
ans = ans * save / (i + 1);
}
return ans;
} void init() {
int i, j, k;
for (i = 1; i <= 21; i ++) {
f[i][0] = 1; node[i][0] = 1;
for (j = 1; j <= 21 / i; j ++) {
f[i][j] = 1;
for (k = 0; k < i; k ++) {
node[i][j] = node[i][j - 1] * i + 1;
f[i][j] = f[i][j] * c(node[i][j] - 1 - k * node[i][j - 1], node[i][j - 1]) * f[i][j - 1];
}
}
}
} int main() {
init();
while (~scanf("%d%d", &n, &m)) {
f[n][m].put();
printf("\n");
}
return 0;
} bign bign::operator = (char *num) {
init();
s[0] = strlen(num);
for (int i = 1; i <= s[0]; i++)
s[i] = num[s[0] - i] - '0';
return *this;
} bign bign::operator = (int num) {
char str[MAXSIZE];
sprintf(str, "%d", num);
return *this = str;
} bool bign::operator < (const bign& b) const {
if (s[0] != b.s[0])
return s[0] < b.s[0];
for (int i = s[0]; i; i--)
if (s[i] != b.s[i])
return s[i] < b.s[i];
return false;
} bign bign::operator + (const bign& c) {
int sum = 0;
bign ans;
ans.s[0] = max(s[0], c.s[0]); for (int i = 1; i <= ans.s[0]; i++) {
if (i <= s[0]) sum += s[i];
if (i <= c.s[0]) sum += c.s[i];
ans.s[i] = sum % 10;
sum /= 10;
}
return ans;
} bign bign::operator * (const bign& c) {
bign ans;
ans.s[0] = 0; for (int i = 1; i <= c.s[0]; i++){
int g = 0; for (int j = 1; j <= s[0]; j++){
int x = s[j] * c.s[i] + g + ans.s[i + j - 1];
ans.s[i + j - 1] = x % 10;
g = x / 10;
}
int t = i + s[0] - 1; while (g){
++t;
g += ans.s[t];
ans.s[t] = g % 10;
g = g / 10;
} ans.s[0] = max(ans.s[0], t);
}
ans.del();
return ans;
} bign bign::operator - (const bign& c) {
bign ans = *this;
int i;
for (i = 1; i <= c.s[0]; i++) {
if (ans.s[i] < c.s[i]) {
ans.s[i] += 10;
ans.s[i + 1]--;;
}
ans.s[i] -= c.s[i];
} for (i = 1; i <= ans.s[0]; i++) {
if (ans.s[i] < 0) {
ans.s[i] += 10;
ans.s[i + 1]--;
}
} ans.del();
return ans;
} int bign::operator / (const bign& c) {
int ans = 0;
bign d = *this;
while (d >= c) {
d = d - c;
ans++;
}
return ans;
} bign bign::operator / (int k) {
bign ans;
ans.s[0] = s[0];
int num = 0;
for (int i = s[0]; i; i--) {
num = num * 10 + s[i];
ans.s[i] = num / k;
num = num % k;
}
ans.del();
return ans;
} int bign:: operator % (int k){
int sum = 0;
for (int i = s[0]; i; i--){
sum = sum * 10 + s[i];
sum = sum % k;
}
return sum;
} bign bign::operator % (const bign &c) {
bign now = *this;
while (now >= c) {
now = now - c;
now.del();
}
return now;
} void bign::operator ++ () {
s[1]++;
for (int i = 1; s[i] == 10; i++) {
s[i] = 0;
s[i + 1]++;
s[0] = max(s[0], i + 1);
}
} bool bign::operator -- () {
del();
if (s[0] == 1 && s[1] == 0) return false; int i;
for (i = 1; s[i] == 0; i++)
s[i] = 9;
s[i]--;
del();
return true;
} void bign::put() {
if (s[0] == 0)
printf("0");
else
for (int i = s[0]; i; i--)
printf("%d", s[i]);
} bign bign::mul(int d) {
s[0] += d;
int i;
for (i = s[0]; i > d; i--)
s[i] = s[i - d];
for (i = d; i; i--)
s[i] = 0;
return *this;
} void bign::del() {
while (s[s[0]] == 0) {
s[0]--;
if (s[0] == 0) break;
}
}

10247 - Complete Tree Labeling(递推高精度)的更多相关文章

  1. PKU 2506 Tiling(递推+高精度||string应用)

    题目大意:原题链接有2×1和2×2两种规格的地板,现要拼2×n的形状,共有多少种情况,首先要做这道题目要先对递推有一定的了解.解题思路:1.假设我们已经铺好了2×(n-1)的情形,则要铺到2×n则只能 ...

  2. 递推+高精度+找规律 UVA 10254 The Priest Mathematician

    题目传送门 /* 题意:汉诺塔问题变形,多了第四个盘子可以放前k个塔,然后n-k个是经典的汉诺塔问题,问最少操作次数 递推+高精度+找规律:f[k]表示前k放在第四个盘子,g[n-k]表示经典三个盘子 ...

  3. [luogu]P1066 2^k进制数[数学][递推][高精度]

    [luogu]P1066 2^k进制数 题目描述 设r是个2^k 进制数,并满足以下条件: (1)r至少是个2位的2^k 进制数. (2)作为2^k 进制数,除最后一位外,r的每一位严格小于它右边相邻 ...

  4. [BZOJ1089][SCOI2003]严格n元树(递推+高精度)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1089 分析: 第一感觉可以用一个通式求出来,但是考虑一下很麻烦,不好搞的.很容易发现最 ...

  5. 【BZOJ】1002: [FJOI2007]轮状病毒 递推+高精度

    1002: [FJOI2007]轮状病毒 Description 给定n(N<=100),编程计算有多少个不同的n轮状病毒. Input 第一行有1个正整数n. Output 将编程计算出的不同 ...

  6. BZOJ 1002 FJOI2007 轮状病毒 递推+高精度

    题目大意:轮状病毒基定义如图.求有多少n轮状病毒 这个递推实在是不会--所以我选择了打表找规律 首先执行下面程序 #include<cstdio> #include<cstring& ...

  7. 递推 + 高精度 --- Tiling

    Tiling Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7264   Accepted: 3528 Descriptio ...

  8. 【BZOJ】1089: [SCOI2003]严格n元树(递推+高精度/fft)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1089 题意:求深度为d的n元树数目.(0<n<=32, 0<=d<=16) ...

  9. 递推+高精度 UVA 10497 Sweet Child Makes Trouble(可爱的孩子惹麻烦)

    题目链接 题意: n个物品全部乱序排列(都不在原来的位置)的方案数. 思路: dp[i]表示i个物品都乱序排序的方案数,所以状态转移方程.考虑i-1个物品乱序,放入第i个物品一定要和i-1个的其中一个 ...

随机推荐

  1. c++ 回调类成员函数实现

    实现类成员函数的回调,并非静态函数:区分之 #ifndef __CALLBACK_PROXY_H_ #define __CALLBACK_PROXY_H_ template <typename ...

  2. makefile之cmake入门

    cmake是一款生成makefile的软件:在生成makefile之前,首先是写一个CMakeLists.txt文件: 以下为典型例子: 先看目录tree, 在test文件夹中有:include目录, ...

  3. 编码神器 Sublime Text 包管理工具及扩展大全

    Sublime Text 是程序员们公认的编码神奇,拥有漂亮的用户界面和强大的功能,例如代码缩略图,多重选择,快捷命令等.还可自定义键绑定,菜单和工具栏.Sublime Text 的主要功能包括:拼写 ...

  4. C++_基础_C与C++的区别2

    内容: (1)C++中的函数 (2)动态内存 (3)引用 (4)类型转换 (5)C++社区对C程序员的建议 1.C++中的函数1.1 函数的重载(1)重载的概念 在同一个作用域中,函数名相同,函数的参 ...

  5. PHP系列笔记——Zend_Controller工作流程

    Zend_Controller_Front接收请求,然后调用Zend_Controller_Router_Rewrite来决定哪个控制器被派遣.为了在请求中设置控制器和动作名称,Zend_Contro ...

  6. java——多线程——单例模式的static方法和非static方法是否是线程安全的?

    单例模式的static方法和非static方法是否是线程安全的? 答案是:单例模式的static方法和非static方法是否是线程安全的,与单例模式无关.也就说,如果static方法或者非static ...

  7. 获取select赋值

    <select class="sel-ul-add" id="xuanzhe"> <option>A</option> &l ...

  8. Do not go gentle into that good night

    Do not go gentle into that good night By:Dylan Thomas   Do not go gentle into that good night,Old ag ...

  9. css2实现尖角箭头式导航

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta http ...

  10. OSG消锯齿

    osg::DisplaySettings::instance()->setNumMultiSamples();   在osg+mfc下成功实现抗锯齿,在程序初始化的时候,即在osg控制类中,我的 ...