Description

The cows are building a roller coaster! They want your help to design as fun a roller coaster as possible, while keeping to the budget. The roller coaster will be built on
a long linear stretch of land of length L (1 <= L <= 1,000). The roller coaster comprises a collection of some of the N (1 <= N <= 10,000) different interchangable components. Each component i has a fixed length Wi (1 <= Wi <= L). Due to varying terrain, each
component i can be only built starting at location Xi (0 <= Xi <= L-Wi). The cows want to string together various roller coaster components starting at 0 and ending at L so that the end of each component (except the last) is the start of the next component.
Each component i has a "fun rating" Fi (1 <= Fi <= 1,000,000) and a cost Ci (1 <= Ci <= 1000). The total fun of the roller coster is the sum of the fun from each component used; the total cost is likewise the sum of the costs of each component used. The cows'
total budget is B (1 <= B <= 1000). Help the cows determine the most fun roller coaster that they can build with their budget.

奶牛们正打算造一条过山车轨道.她们希望你帮忙,找出最有趣,但又符合预算的方案.  过山车的轨道由若干钢轨首尾相连,由x=0处一直延伸到X=L(1≤L≤1000)处.现有N(1≤N≤10000)根钢轨,每根钢轨的起点Xi(0≤Xi≤L- Wi),长度wi(l≤Wi≤L),有趣指数Fi(1≤Fi≤1000000),成本Ci(l≤Ci≤1000)均己知.请确定一种最优方案,使得选用的钢轨的有趣指数之和最大,同时成本之和不超过B(1≤B≤1000).

Input

* Line 1: Three space-separated integers: L, N and B.

* Lines 2..N+1: Line i+1 contains four space-separated integers, respectively: Xi, Wi, Fi, and Ci.

    第1行输入L,N,B,接下来N行,每行四个整数Xi,wi,Fi,Ci.

Output

* Line 1: A single integer that is the maximum fun value that a roller-coaster can have while staying within the budget and meeting all the other constraints. If it is not
possible to build a roller-coaster within budget, output -1.

Sample Input

5 6 10

0 2 20 6

2 3 5 6

0 1 2 1

1 1 1 3

1 2 5 4

3 2 10 2




Sample Output

17

选用第3条,第5条和第6条钢轨

题意是有一段0到L的区间,要求用一些线段覆盖,每一条线段都有价值和代价,求在将区间完全覆盖(不能重叠)和总代价不超过B的条件下能获得的最大价值

首先很容易想到一种背包dp的方法

先把线段排序,不用说

f[i][j][k]表示前i个线段覆盖0到j的区间代价为k的最大价值

这样100e肯定TLE+MLE,不用说

然后不会优化,去orz了黄巨大才会做

把第一维省掉,但是依然TLE

但是我们发现枚举第i段线段,那么它能更新的只有几个状态

学着黄巨大把方程倒一下,令f[i][j]表示费用为i,能覆盖0到j的最大价值

那么枚举费用k,因为不能重叠,只会更新从当前线段左端点开始的方案

这样只要O(NB)就可以了

#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long
using namespace std;
struct work{
int l,r,f,c;
}a[10010];
int n,m,b;
LL f[1010][1010],ans=-1;
inline bool cmp(const work &a,const work &b){return a.l<b.l||a.l==b.l&&a.r<b.r;}
inline int max(int a,int b)
{return a>b?a:b;}
inline int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int main()
{
memset(f,-1,sizeof(f));
f[0][0]=0;
n=read();m=read();b=read();
for (int i=1;i<=m;i++)
{
a[i].l=read();
a[i].r=a[i].l+read();
a[i].f=read();
a[i].c=read();
}
sort(a+1,a+m+1,cmp);
for (int i=1;i<=m;i++)
for (int j=a[i].c;j<=b;j++)
if (f[j-a[i].c][a[i].l]!=-1)
f[j][a[i].r]=max(f[j][a[i].r],f[j-a[i].c][a[i].l]+a[i].f);
for (int i=0;i<=b;i++)ans=max(ans,f[i][n]);
printf("%lld\n",ans);
}

bzoj1649 [Usaco2006 Dec]Cow Roller Coaster的更多相关文章

  1. 【动态规划】bzoj1649 [Usaco2006 Dec]Cow Roller Coaster

    很像背包. 这种在一个数轴上进行操作的题常常需要对区间排序. f[i][j]表示距离到i时,花费为j时的权值之和. f[x[i]+l[i]][j+c[i]]=max{f[x[i]][j]+w[i]}( ...

  2. BZOJ 1649: [Usaco2006 Dec]Cow Roller Coaster( dp )

    有点类似背包 , 就是那样子搞... --------------------------------------------------------------------------------- ...

  3. 【BZOJ】1649: [Usaco2006 Dec]Cow Roller Coaster(dp)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1649 又是题解... 设f[i][j]表示费用i长度j得到的最大乐趣 f[i][end[a]]=ma ...

  4. BZOJ——1649: [Usaco2006 Dec]Cow Roller Coaster

    http://www.lydsy.com/JudgeOnline/problem.php?id=1649 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 7 ...

  5. bzoj 1649: [Usaco2006 Dec]Cow Roller Coaster【dp】

    DAG上的dp 因为本身升序就是拓扑序,所以建出图来直接从1到ndp即可,设f[i][j]为到i花费了j #include<iostream> #include<cstdio> ...

  6. bzoj1649 / P2854 [USACO06DEC]牛的过山车Cow Roller Coaster

    P2854 [USACO06DEC]牛的过山车Cow Roller Coaster dp 对铁轨按左端点排个序,蓝后就是普通的二维dp了. 设$d[i][j]$为当前位置$i$,成本为$j$的最小花费 ...

  7. Bzoj 1648: [Usaco2006 Dec]Cow Picnic 奶牛野餐 深搜,bitset

    1648: [Usaco2006 Dec]Cow Picnic 奶牛野餐 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 554  Solved: 346[ ...

  8. BZOJ 1648: [Usaco2006 Dec]Cow Picnic 奶牛野餐( dfs )

    直接从每个奶牛所在的farm dfs , 然后算一下.. ----------------------------------------------------------------------- ...

  9. 1648: [Usaco2006 Dec]Cow Picnic 奶牛野餐

    1648: [Usaco2006 Dec]Cow Picnic 奶牛野餐 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 432  Solved: 270[ ...

随机推荐

  1. 10个工具让你的 shell 脚本更强大

    10个工具让你的 shell 脚本更强大 很多人误以为shell脚本只能在命令行下使用.其实shell也可以调用一些GUI组件,例如菜单,警告框,进度条等等.你可以控制最终的输出,光标位 置还有各种输 ...

  2. cf448D Multiplication Table

    D. Multiplication Table time limit per test 1 second memory limit per test 256 megabytes input stand ...

  3. UVA10817--状态压缩DP

    第一次做状态压缩dp..没有思路..看书看明白的,不过看完发现汝哥的做法多算了一些东西,完全可以省去不算.. 用两个集合,s1表示恰好有一个人教的科目,s2表示至少有两个人教的科目.d(i,s1,s2 ...

  4. 《Algorithms 4th Edition》读书笔记——3.1 符号表(Elementary Symbol Tables)-Ⅲ

    3.1.3 用例举例 在学习它的实现之前我们还是应该先看看如何使用它.相应的我们这里考察两个用例:一个用来跟踪算法在小规模输入下的行为测试用例和一个来寻找更高效的实现的性能测试用例. 3.1.3.1 ...

  5. Spark函数详解系列之RDD基本转换

    摘要:   RDD:弹性分布式数据集,是一种特殊集合 ‚ 支持多种来源 ‚ 有容错机制 ‚ 可以被缓存 ‚ 支持并行操作,一个RDD代表一个分区里的数据集   RDD有两种操作算子:         ...

  6. vs连接mysql出错解决方法

    vs连接mysql出错解决方法 先按以下的步骤配置一下: **- (1)打开VC6.0 工具栏Tools菜单下的Options选项.在Directories的标签页中右边的"Show dir ...

  7. JS正则表达式收集篇

    1.验证只可输入整数或小数点后两位的数字:/^([1-9]{1}|[1-9]{1}[0-9])+(.[1-9]{1,2})?$/ 2.验证Email: /^([a-zA-Z0-9]+[_|\_|\.] ...

  8. /调整button的title的位置

    [bottomButton setTitleEdgeInsets:UIEdgeInsetsMake(10, -190, 10, 44)];  //上左下右            ||button.co ...

  9. POJ 2135 Farm Tour (最小费用最大流模板)

    题目大意: 给你一个n个农场,有m条道路,起点是1号农场,终点是n号农场,现在要求从1走到n,再从n走到1,要求不走重复路径,求最短路径长度. 算法讨论: 最小费用最大流.我们可以这样建模:既然要求不 ...

  10. hdu1219

    Problem Description Ignatius is doing his homework now. The teacher gives him some articles and asks ...