hdu4337 King Arthur's Knights
King Arthur's Knights
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1415 Accepted Submission(s): 612
Special Judge
- from Fate / Stay Night
You must have known the legend of King Arthur and his knights of the round table. The round table has no head, implying that everyone has equal status. Some knights are close friends with each other, so they prefer to sit next to each other.
Given the relationship of these knights, the King Arthur request you to find an arrangement such that, for every knight, his two adjacent knights are both his close friends. And you should note that because the knights are very united, everyone has at least half of the group as his close friends. More specifically speaking, if there are N knights in total, every knight has at least (N + 1) / 2 other knights as his close friends.
1 2
2 3
1 3
4 4
1 4
2 4
2 3
1 3
1 4 2 3
#include <iostream>
#include <stdio.h>
#include <vector>
#include <string.h>
using namespace std;
#define MAXN 155
vector<int > vec[MAXN];
int num[155],visit[155],n,map[155];
int dfs(int node,int step)
{
int i;
// printf("%dnode ",node);
if(step==n-1)
{
if(map[node]==1)
{
printf("%d",node);
return 1;
} else
return -1;
}
for(i=0;i<vec[node].size();i++)
{
int temp=vec[node][i];
num[step]=temp;
if(visit[temp]==0)
{
visit[temp]=1;
if(dfs(vec[node][i],step+1)==1)
{
printf(" %d",node);
return 1;
}
visit[temp]=0;
} }
return -1;
}
int main()
{
int m,i,s,e;
while(scanf("%d%d",&n,&m)!=EOF)
{
memset(map,0,sizeof(map));
for(i=1;i<=n;i++)
{
vec[i].clear();
}
for(i=0;i<m;i++)
{
scanf("%d%d",&s,&e);
vec[s].push_back(e);
vec[e].push_back(s);
if(s==1)
{
map[e]=1;
}
if(e==1)
{
map[s]=1;
}
}
num[0]=1;
memset(visit,0,sizeof(visit));
visit[1]=1;
if(dfs(1,0)==-1)
{
printf("no solution\n");
continue;
} printf("\n");
} return 0;
}
hdu4337 King Arthur's Knights的更多相关文章
- hdu 4337 King Arthur's Knights (Hamilton)
King Arthur's KnightsTime Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
- POJ3682 King Arthur's Birthday Celebration
King Arthur is an narcissist who intends to spare no coins to celebrate his coming K-th birthday. Th ...
- poj-3682 King Arthur's Birthday Celebration
C - King Arthur's Birthday Celebration POJ - 3682 King Arthur is an narcissist who intends to spare ...
- HDU 4337 King Arthur's Knights 它输出一个哈密顿电路
n积分m文章无向边 它输出一个哈密顿电路 #include <cstdio> #include <cstring> #include <iostream> usin ...
- 【概率论】【POJ 3682】【King Arthur's Birthday Celebration】
题意:进行翻硬币实验,若k次向上则结束,进行第n次实验需花费2*n-1的费用,询问期望结束次数及期望结束费用 设F[i]为第i次结束时的概率 F[i]= c(i-1,k-1)*p^k*(1-p)^( ...
- King Arthur's Birthday Celebration
每天抛一个硬币,硬币正面朝上的几率是p,直到抛出k次正面为止结束,第一天抛硬币需花费1,第二天花费3,然后是5,7,9……以此类推,让我们求出抛硬币的天数的期望和花费的期望. 天数期望: A.投出了k ...
- POJ3682;King Arthur's Birthday Celebration(期望)
传送门 题意 进行翻硬币实验,若k次向上则结束,进行第n次实验需花费2*n-1的费用,询问期望结束次数及期望结束费用 分析 我们令f[i]为结束概率 \[f[i]=C_{i-1}^{k-1}*p^k* ...
- [POJ3682]King Arthur's Birthday Celebration[期望DP]
也许更好的阅读体验 \(\mathcal{Description}\) 每天抛一个硬币,硬币正面朝上的几率是p,直到抛出k次正面为止结束,第\(i\)天抛硬币的花费为\(2i-1\),求出抛硬币的天数 ...
- poj 3682 King Arthur's Birthday Celebration (期望dp)
传送门 解题思路 第一问比较简单,设$f[i]$表示扔了$i$次正面向上的硬币的期望,那么有转移方程 : $f[i]=f[i]*(1-p)+f[i-1]*p+1$,意思就是$i$次正面向上可以 ...
随机推荐
- groovy的三个强劲属性(一)Gpath
我们先从GPath开始,一个GPath是groovy代码的一个强劲对象导航的结构,名称的选择与XPath相似,XPath是一个用来描述XML(和等价物)文档的标准,正如XPath,GP ...
- Linux /etc/cron.d作用(转自 定时任务crontab cron.d)
原文链接:http://huangfuligang.blog.51cto.com/9181639/1608549 一.cron.d增加定时任务 当我们要增加全局性的计划任务时,一种方式是直接修改/et ...
- POJ 2337 Catenyms(欧拉回(通)路:路径输出+最小字典序)
题目链接:http://poj.org/problem?id=2337 题目大意:给你n个字符串,只有字符串首和尾相同才能连接起来.请你以最小字典序输出连接好的单词. 解题思路:跟POJ1386一个意 ...
- jquery文档
http://jquery.cuishifeng.cn/selected_1.html
- springcloud 出现unavailable-replicas
springcloud 出现unavailable-replicas 原因: 1. 部分服务不可用 2. 直接使用了ip地址作为hostname application.properties # 不能 ...
- day3 作业
文件操作用户很广泛,我们经常对文件进行操作: global log 127.0.0.1 local2 daemon maxconn log 127.0.0.1 local2 info defaults ...
- shell脚本中${var1:-var2}
在一个shell脚本中看见一行代码: DATE=${:-`date "+%Y%m%d" -d "-1 day"`} 查了一下 ${var1:-var2} 这种结 ...
- ffmpeg 编译graph2dot
cd ffmpeg ./configure make make tools/graph2dot
- 【JAVAWEB学习笔记】19_事务概述、操作、特性和隔离级别
事务 学习目标 案例-完成转账 一.事务概述 1.什么是事务 一件事情有n个组成单元 要不这n个组成单元同时成功 要不n个单元就同时失败 就是将n个组成单元放到一个事务中 2.mysql的事务 默认的 ...
- JSTL-1
JSTL的配置和使用: * 配置:将jstl.jar和standard.jar拷贝到WEB-INF/lib下 * 使用:要采用一些指令:采用taglib指令 JSTL标准标签库(JSP Standar ...