光线求交

  • 光线定义:position \(a(t)\) = \(o\) + \(t\vec{d}\);
  • 球定义: center p, radius r;
  • 平面定义:normal \(\vec{n}\) , offset t;
  • 三角形定义:position \(a_1\), \(a_2\), \(a_3\), normal \(\vec{n}\);

光线与球相交 (Ray/Sphere Intersection)



c++代码 :

bool HitTest(const Ray& ray, HitTestResult* result)
{
Vector eo = Center - ray.Position;
float v = eo * ray.Direction;
auto disc = Radius * Radius - (eo * eo) + v * v;
if (disc < 0) return false;
disc = v - sqrt(disc);
if (disc < 0.001f || disc >= ray.MaxDistance) return false;
result->Shape = const_cast<Sphere*>(this);
result->Normal = (disc * ray.Direction - eo).Normalize();
result->Distance = disc;
return true;
}

光线与平面相交 (Ray / Plane Intersection)

线与平面相交 Ray/Plane Intersection

平面在空间几何中可以用一个向量(法向量)和平面中的一点P0来表示。

平面就是满足下式的点集:\(\vec{n}(\vec{P}-\vec{P_0})= 0\)

得到:\(\vec{n}\cdot\vec{P}=d\); \(d=\vec{n}\cdot\vec{P_0}\);

给定射线r(t) = o +td,平面方程为n.p+d=0,将p(t)带入到平面方程,最后求得t:

\(t = (-d-(\vec{n}\cdot\vec{p_0}))/(\vec{n}\cdot\vec{d})\)



c++代码:

bool HitTest(const Ray& ray, HitTestResult* result)
{
auto denom = Normal * ray.Direction;
if (denom > 0) return false;
auto d = (Normal * ray.Position + Offset) / (-denom);
if (d >= ray.MaxDistance) return false;
result->Shape = const_cast<Plane*>(this);
result->Normal = Normal;
result->Distance = d;
return true;
}

光线与三角形相交 (Ray/Triangle Intersection)

  • 判断射线是否与平面相交
  • 判断点是否在三角形内
//构造函数:
Triangle(const Vector& Point1, const Vector& Point2, const Vector& Point3)
: Point1(Point1), Point2(Point2), Point3(Point3)
{
auto n1 = Point2 - Point1;
auto n2 = Point3 - Point1;
normal = Vector::Cross((Point2 - Point1), (Point3 - Point1)).Normalize();
} bool HitTest(const Ray& ray, HitTestResult* result)
{
float eo;
if (normal.Length() != 0 && (eo = ray.Direction * normal) < 0)
{
auto S = (Point1 - ray.Position) * normal / eo;
if (S < 0.001f || S >= ray.MaxDistance)
return false; auto V = S * ray.Direction + ray.Position; if (IsInner(V))
{
result->Shape = const_cast<Triangle*>(this);
result->Normal = normal;
result->Distance = S;
return true;
}
return false;
}
return false;
}

另一种方法:[用三角形重心求交

光线求交-面、三角形、球 (Ray intersection)的更多相关文章

  1. ray与triangle/quad求交二三事

    引擎中,ray与quad求交,算法未细看,但有求解二次方程,不解.ray与triangle求交,使用的是97年经典算法,仔细看过论文,多谢小武同学指点,用到了克拉默法则求解线性方程组.想模仿该方法,做 ...

  2. 一步一步实现基于GPU的pathtracer(二):求交算法

    不管是哪种全局光照算法,最根本的都要落实到光线与物体的求交.主要分为光线与参数曲面和非参数曲面的求交,典型的参数曲面有球.盒.圆柱等基本体及基本体的组合体,以及一些更为复杂的参数曲面.非参数曲面就是所 ...

  3. [NetTopologySuite](2)任意多边形求交

    任意多边形求交: private void btnPolygon_Click(object sender, EventArgs e) { , , , , , , , , , , , , , }; , ...

  4. HDU - 3982:Harry Potter and J.K.Rowling(半平面交+圆与多边形求交)(WA ing)

    pro:给定一枚蛋糕,蛋糕上某个位置有个草莓,寿星在上面切了N刀,最后寿星会吃含有草莓的那一块蛋糕,问他的蛋糕占总蛋糕的面积比. sol:显然需要半平面交求含有蛋糕的那一块,然后有圆弧,不太方便求交. ...

  5. OpenCASCADE 平面求交

    OpenCASCADE 平面求交 eryar@163.com OpenCASCADE提供了类IntAna_QuadQuadGeo用来计算两个二次曲面quadric(球面.圆柱面.圆锥面及平面,平面是二 ...

  6. 【Weiss】【第03章】练习3.4、3.5:有序链表求交、并

    [练习3.4] 给定两个已排序的表L1和L2,只使用基本的表操作编写计算L1∩L2的过程. [练习3.5] 给定两个已排序的表L1和L2,只使用基本的表操作编写计算L1∪L2的过程. 思路比较简单,测 ...

  7. 一个好用的多方隐私求交算法库JasonCeng/MultipartyPSI-Pro

    Github链接传送:JasonCeng/MultipartyPSI-Pro 大家好,我是阿创,这是我的第29篇原创文章. 今天是一篇纯技术性文章,希望对工程狮们有所帮助. 向大家推荐一个我最近改造的 ...

  8. 试题系列四(袋中有6红球 3黄球 3绿球,从中取6个球,求所有拿到球的颜色的可能 c(12,6))

    1.袋中有6红球 3黄球 3绿球,从中取6个球,求所有拿到球的颜色的可能 c(12,6) #include<stdio.h> int main(int argc, char** argv) ...

  9. hdu 5111 树上求交

    hdu 5111 树上求交(树链剖分 + 主席树) 题意: 给出两棵树,大小分别为\(n1\),\(n2\), 树上的结点权值为\(weight_i\) 同一棵树上的结点权值各不相同,不同树上的结点权 ...

随机推荐

  1. [洛谷P3228] [HNOI2013]数列

    洛谷题目链接:[HNOI2013]数列 题目描述 小T最近在学着买股票,他得到内部消息:F公司的股票将会疯涨.股票每天的价格已知是正整数,并且由于客观上的原因,最多只能为N.在疯涨的K天中小T观察到: ...

  2. JAVA多线程基础学习二:synchronized

    本篇主要介绍Java多线程中的同步,也就是如何在Java语言中写出线程安全的程序,如何在Java语言中解决非线程安全的相关问题,没错就是使用synchronized. 一.如何解决线程安全问题? 一般 ...

  3. 遍历hashmap

    转]Java中HashMap遍历的两种方式原文地址: http://www.javaweb.cc/language/java/032291.shtml 第一种: Map map = new HashM ...

  4. 一个ASP.NET中使用的MessageBox类

    /// <summary> /// 自定义信息对话框 /// </summary> public class MessageBox { /// <summary> ...

  5. Oracle数据库语句

    Oracle数据库语句 ORACLE支持五种类型的完整性约束 NOT NULL (非空)--防止NULL值进入指定的列,在单列基础上定义,默认情况下,ORACLE允许在任何列中有NULL值. CHEC ...

  6. 在Unity中实现屏幕空间阴影(1)

    接着上篇文章,我们实现了SSR效果. 其中的在屏幕空间进行光线追踪的方法是通用的.借此我们再实现一种屏幕空间的效果,即屏幕空间阴影. 文中的图片来自Catlike coding http://catl ...

  7. 【CF343D】 Water Tree(树链剖分)

    题目链接 树剖傻逼题,练练手好久没写树剖了. 查询忘记\(pushdown\)抓了好久虫.. 全文手写,一遍过... #include <cstdio> const int MAXN = ...

  8. WHY学习python?

    1.python更容易上手 2.功能库很多,不用重复造轮子 3.能干的事情很多(网站开发,爬虫,自动化运维,数据分析,游戏开发,人工智能) 网站开发:豆瓣,知乎 网站框架:django (姜狗) py ...

  9. C++类型转换 -- 由其他类型转换到自定义类型

    由其他类型转换到自定义类型 由其他类型(如int,double)向自定义类的转换是由构造函数来实现,只有当类的定义和实现中提供了合适的构造函数,转换才能通过. /******************* ...

  10. C++之模板编程

    当我们越来越多的使用C++的特性, 将越来越多的问题和事物抽象成对象时, 我们不难发现:很多对象都具有共性. 比如 数值可以增加.减少:字符串也可以增加减少. 它们的动作是相似的, 只是对象的类型不同 ...