luogu

题目描述

比特镇的路网由 \(m\) 条双向道路连接的 \(n\) 个交叉路口组成。

最近,比特镇获得了一场铁人两项锦标赛的主办权。这场比赛共有两段赛程:选手先完成一段长跑赛程,然后骑自行车完成第二段赛程。

比赛的路线要按照如下方法规划:

\(1\)、先选择三个两两互不相同的路口 \(s, c\) 和 \(f\) ,分别作为比赛的起点、切换点(运动员在长跑到达这个点后,骑自行车前往终点)、终点。

\(2\)、选择一条从 \(s\) 出发,经过 \(c\) 最终到达 \(f\) 的路径。考虑到安全因素,选择的路径经过同一个点至多一次。

在规划路径之前,镇长想请你帮忙计算,总共有多少种不同的选取 \(s,c\) 和 \(f\) 的方案,使得在第 \(2\) 步中至少能设计出一条满足要求的路径。

sol

像我这种连圆方树都不会的菜鸡就活该\(APIO\)被卡线qaq。

把圆方树建出来,在树中任意枚举两个圆点作为 \(s\) 和 \(f\) ,然后考虑 \(c\) 有多少种选法。

应该是这两个点路径上的每个点双中的点都可以选吧。

令每个圆点的权值为\(-1\),每个方点的权值为点双大小,那么选法应该就是两点路径的权值和吧。

也就是说我们要求圆方树上\(n^2\)条圆点到圆点的路径的权值和。

很容易想到计算每个点被算了多少次。这样就可以在线性的时间内做完这题了。

code

#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
int gi(){
int x=0,w=1;char ch=getchar();
while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if (ch=='-') w=0,ch=getchar();
while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return w?x:-x;
}
const int N = 4e5+5;
int n,tot,m,dfn[N],low[N],tim,S[N],val[N],sz[N],sum;
long long ans;
struct Graph{
int to[N],nxt[N],head[N],cnt;
void link(int u,int v){
to[++cnt]=v;nxt[cnt]=head[u];head[u]=cnt;
}
}G1,G2;
void Tarjan(int u){
dfn[u]=low[u]=++tim;S[++S[0]]=u;
sz[u]=1;val[u]=-1;
for (int e=G1.head[u];e;e=G1.nxt[e]){
int v=G1.to[e];
if (!dfn[v]){
Tarjan(v),low[u]=min(low[u],low[v]);
if (low[v]>=dfn[u]){
G2.link(u,++tot);val[tot]=1;int x=0;
do{
x=S[S[0]--];G2.link(tot,x);
sz[tot]+=sz[x];++val[tot];
}while (x!=v);
sz[u]+=sz[tot];
}
}
else low[u]=min(low[u],dfn[v]);
}
}
void dfs(int u){
if (u<=n) ans+=1ll*(sum-1)*val[u];
ans+=1ll*(sum-sz[u])*sz[u]*val[u];
for (int e=G2.head[u];e;e=G2.nxt[e]){
int v=G2.to[e];
ans+=1ll*(sum-sz[v])*sz[v]*val[u];
dfs(v);
}
}
int main(){
tot=n=gi();m=gi();
while (m--){
int u=gi(),v=gi();
G1.link(u,v);G1.link(v,u);
}
for (int i=1;i<=n;++i) if (!dfn[i]) Tarjan(i),sum=sz[i],dfs(i);
printf("%lld\n",ans);return 0;
}

[Luogu4630][APIO2018]Duathlon 铁人两项的更多相关文章

  1. [APIO2018] Duathlon 铁人两项 圆方树,DP

    [APIO2018] Duathlon 铁人两项 LG传送门 圆方树+简单DP. 不会圆方树的话可以看看我的另一篇文章. 考虑暴力怎么写,枚举两个点,答案加上两个点之间的点的个数. 看到题面中的一句话 ...

  2. P4630 [APIO2018] Duathlon 铁人两项

    思路 圆方树,一个点双中的所有点都可以被经过,所以给圆点赋值-1,方点赋值为圆点个数,统计圆点两两之间的路径权值和即可 代码 #include <cstdio> #include < ...

  3. [APIO2018] Duathlon 铁人两项

    不经过重点,考虑点双 点双,考虑圆方树 两个点s,t,中间路径上,所有点双里的点都可以经过,特别地,s,t作为割点的时候,不能往后走,也就是不能经过身后的方点 也就是,(s,t)经过树上路径上的所有圆 ...

  4. 【题解】APIO2018 Duathlon 铁人两项

    首先对于给出的图建立圆方树,然后我们分类讨论每一个点作为中间的中转站出现的情况有多少种,累积到 \(ans\) 中. 对于圆点:在任意两个子树内分别选出一个节点都是合法的. 对于方点:连接向方点的点均 ...

  5. luogu 4630 [APIO2018] Duathlon 铁人两项

    题目大意: 无向图上找三个点 a b c使存在一条从a到b经过c的路径 求取这三个点的方案数 思路: 建立圆方树 这个圆方树保证没有两个圆点相连或两个方点相连 对于每个节点x 设该节点为路径的中间节点 ...

  6. 洛谷P4630 [APIO2018] Duathlon 铁人两项 (圆方树)

    圆方树大致理解:将每个点双看做一个新建的点(方点),该点双内的所有点(圆点)都向新建的点连边,最后形成一棵树,可以给点赋予点权,用以解决相关路径问题. 在本题中,方点点权赋值为该点双的大小,因为两个点 ...

  7. 洛谷P4630 [APIO2018] Duathlon 铁人两项 【圆方树】

    题目链接 洛谷P4630 题解 看了一下部分分,觉得树的部分很可做,就相当于求一个点对路径长之和的东西,考虑一下能不能转化到一般图来? 一般图要转为树,就使用圆方树呗 思考一下发现,两点之间经过的点双 ...

  8. [洛谷P4630][APIO2018] Duathlon 铁人两项

    题目大意:给一张无向图,求三元组$(u,v,w)$满足$u->v->w$为简单路径,求个数 题解:圆方树,缩点后$DP$,因为同一个点双中的点一定地位相同 卡点:1.$father$数组开 ...

  9. 【APIO2018】铁人两项

    [APIO2018]铁人两项 题目描述 大意就是给定一张无向图,询问三元组\((s,c,f)\)中满足\(s\neq c\neq f\)且存在\((s\to c\to f)\)的简单路径(每个点最多经 ...

随机推荐

  1. Apache 2 移植到Arm开发板

    第一步,安装pcre: tar -xvzf pcre-8.31.tar.gz cd pcre-8.31 ./configure --prefix=$ARMROOTFS/usr/pcre 的错误,如下图 ...

  2. 配置Eclipse可以查看JDK类库源码

    一.配置方法 配置Eclipse可以查看JDK类库源码 Window->Preferences->Java->Installed JREs 若没有JRE,需要自己添加进来,有的话,点 ...

  3. MongoDB 查看所有用户账号信息

    在 MongoDB 中创建了很多帐号,怎么查看所有帐号信息? 1. 查看全局所有账户 2. 查看当前库下的账户 查看全局所有账户 : > use admin switched to db adm ...

  4. PowerDesigner用法和技巧

    PowerDesigner是一款功能非常强大的建模工具软件,足以与Rose比肩,同样是当今最著名的建模软件之一.Rose是专攻UML对象模型的建模工具,之后才向数据库建模发展,而PowerDesign ...

  5. 【Raspberry pi】cpu、内存等查看及扩展

    使用树莓派时,需要在其系统中部署几个不同功能的程序系统,并涉及到数据库读写.串口读写.web访问等,使系统使用压力较大,在查看树莓派使用情况时也遇到些许问题. free命令 total used fr ...

  6. 【hive】null值判断

    hive用作null值的判断是不能用 = , != 来判断的 只能用is [not] null来完成 不支持ifnull()函数(mysql支持) 适用于所有数据类型 (1)条件中判断是否为空 whe ...

  7. settings.xml配置文件详解

    简单值 一半顶层settings元素是简单值,它们表示的一系列值可以配置Maven的核心行为:settings.xml中的简单顶层元素 < settings xmlns="http:/ ...

  8. 安装VMware Tools:Ubuntu

    1.首先准备好linux.iso,在安装目录下应该可以找到,我使用的是这个: 链接:http://pan.baidu.com/s/1nuGQyIt 密码:b5mn 2.打开Ubuntu,CD中加载该i ...

  9. 二十、dbms_stats(用于搜集,查看,修改数据库对象的优化统计信息)

    1.概述 作用:用于搜集,查看,修改数据库对象的优化统计信息. 2.包的组成 1).get_column_stats作用:用于取得列的统计信息语法:dbms_stats.get_column_stat ...

  10. C++实现设计模式之-装饰模式

    饰模式:动态地给一个对象添加一些额外的职责.就增加功能来说,装饰模式相比生成子类更为灵活.有时我们希望给某个对象而不是整个类添加一些功能.比如有一个手机,允许你为手机添加特性,比如增加挂件.屏幕贴膜等 ...