题目链接

维护子树信息向来不是\(LCT\)所擅长的,所以我没搞懂qwq

权当背背模板吧。Flash巨佬的blog里面写了虽然我没看懂。

#include <cstdio>
#define R register int
#define I inline void
#define lc c[x][0]
#define rc c[x][1]
const int MAXN = 300010;
inline int read(){
int s = 0, w = 1;
char ch = getchar();
while(ch < '0' || ch > '9'){ if(ch == '-') w = -1; ch = getchar(); }
while(ch >= '0' && ch <= '9'){ s = s * 10 + ch - '0'; ch = getchar(); }
return s * w;
}
int f[MAXN], c[MAXN][2], v[MAXN], sz[MAXN], st[MAXN], tag[MAXN], ss[MAXN];
inline int nroot(R x){
return c[f[x]][0] == x || c[f[x]][1] == x;
}
I pushup(R x){
sz[x] = sz[lc] + sz[rc] + ss[x] + 1;
}
I pushdown(R x){
if(tag[x]){
R t = lc; lc = rc; rc = t;
tag[lc] ^= 1; tag[rc] ^= 1; tag[x] = 0;
}
}
I rotate(R x){
R y = f[x], z = f[y], k = c[y][1] == x, w = c[x][!k];
if(nroot(y)) c[z][c[z][1] == y] = x;
c[x][!k] = y; c[y][k] = w; f[y] = x; f[x] = z;
if(w) f[w] = y;
pushup(y);
}
I pushall(R x){
if(nroot(x)) pushall(f[x]);
pushdown(x);
}
I splay(R x){
pushall(x);
while(nroot(x)) rotate(x);
pushup(x);
}
I access(R x){
for(R y = 0; x; x = f[y = x]){
splay(x); ss[x] += sz[rc]; ss[x] -= sz[rc = y]; pushup(x);
}
}
I makeroot(R x){
access(x); splay(x);
tag[x] ^= 1;
}
I split(R x, R y){
makeroot(x); access(y); splay(y);
}
I link(R x, R y){
split(x, y);
ss[f[x] = y] += sz[x];
pushup(y);
}
int n, m, a, b;
char opt;
int main(){
n = read(); m = read();
for(R i = 1; i <= n; ++i) sz[i] = 1;
while(m--){
opt = getchar(); while(opt != 'A' && opt != 'Q') opt = getchar();
a = read(); b = read();
switch(opt){
case 'Q' : split(a, b); printf("%lld\n", (long long)(ss[a] + 1) * (ss[b] + 1)); break;
case 'A' : link(a, b); break;
}
}
return 0;
}

【洛谷 P4219】 [BJOI2014]大融合(LCT)的更多相关文章

  1. 洛谷 P4219 [BJOI2014]大融合 解题报告

    P4219 [BJOI2014]大融合 题目描述 小强要在\(N\)个孤立的星球上建立起一套通信系统.这套通信系统就是连接\(N\)个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的 ...

  2. 洛谷P4219 - [BJOI2014]大融合

    Portal Description 初始有\(n(n\leq10^5)\)个孤立的点,进行\(Q(Q\leq10^5)\)次操作: 连接边\((u,v)\),保证\(u,v\)不连通. 询问有多少条 ...

  3. 洛谷P4219 [BJOI2014]大融合(LCT,Splay)

    LCT维护子树信息的思路总结与其它问题详见我的LCT总结 思路分析 动态连边,LCT题目跑不了了.然而这题又有点奇特的地方. 我们分析一下,查询操作就是要让我们求出砍断这条边后,x和y各自子树大小的乘 ...

  4. 洛谷P4219 [BJOI2014]大融合(LCT)

    LCT维护子树信息的思路总结与其它问题详见我的LCT总结 思路分析 动态连边,LCT题目跑不了了.然而这题又有点奇特的地方. 我们分析一下,查询操作就是要让我们求出砍断这条边后,x和y各自子树大小的乘 ...

  5. 洛谷 P4219 [BJOI2014]大融合

    查询,就相当于先删去这条边,然后查询边的两个端点所在连通块大小,乘起来得到答案,然后再把边加回去 可以用线段树分治做 #pragma GCC optimize("Ofast") # ...

  6. 洛谷4219 BJOI2014大融合(LCT维护子树信息)

    QWQ 这个题目是LCT维护子树信息的经典应用 根据题目信息来看,对于一个这条边的两个端点各自的\(size\)乘起来,不过这个应该算呢? 我们可以考虑在LCT上多维护一个\(xv[i]\)表示\(i ...

  7. P4219 [BJOI2014]大融合 LCT维护子树大小

    \(\color{#0066ff}{ 题目描述 }\) 小强要在\(N\)个孤立的星球上建立起一套通信系统.这套通信系统就是连接\(N\)个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一 ...

  8. P4219 [BJOI2014]大融合(LCT)

    P4219 [BJOI2014]大融合 对于每个询问$(u,v)$所求的是 ($u$的虚边子树大小+1)*($v$的虚边子树大小+1) 于是我们再开个$si[i]$数组表示$i$的虚边子树大小,维护一 ...

  9. [BZOJ4530][Bjoi2014]大融合 LCT + 启发式合并

    [BZOJ4530][Bjoi2014]大融合 试题描述 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是 ...

  10. BZOJ.4530.[BJOI2014]大融合(LCT)

    题目链接 BZOJ 洛谷 详见这 很明显题目是要求去掉一条边后两边子树sz[]的乘积. LCT维护的是链的信息,那么子树呢? 我们用s_i[x]来记录轻边连向x的子树的和(记作虚儿子),那么sum[x ...

随机推荐

  1. 微信Web开发者工具-下载、安装和使用图解

    开发和测试小程序,需要借助微信官方提供的微信Web开发者工具进行预览和调试代码,从下载安装到使用,大致的流程如下: 1.下载安装包 下载地址传送门:https://developers.weixin. ...

  2. VBA-从周课表统计节次

    Sub datainsert() Dim r1 As Integer, r2 As Integer, i As Integer, j As Integer, findrow As Integer, f ...

  3. Spring Cloud Config

    1.config服务端配置 1.1 引入依赖 <dependency> <groupId>org.springframework.boot</groupId> &l ...

  4. ZOJ3084_S-Nim

    题目的意思是这样的,给定你若干堆石子,每次你可以从任一堆取出某些固定数量的石子,每次取完后必须保证没堆石子的数量不为0,谁无法操作了就算fail. 刚刚开始看题目的时候有点也没有思路,甚至连Sg函数也 ...

  5. hdu 6375 百度之星 度度熊学队列

    题目链接 Problem Description 度度熊正在学习双端队列,他对其翻转和合并产生了很大的兴趣. 初始时有 N 个空的双端队列(编号为 1 到 N ),你要支持度度熊的 Q 次操作. ①1 ...

  6. BZOJ4985 评分(二分答案+树形dp)

    首先二分答案简化一下问题,现在只有0和1了,要求最后剩下的是1.再简化一下考虑没有已固定的位置怎么做.考虑每个位置由其合并到的位置连边,显然这样形成了一棵三叉树.设f[i]为使得某位置为1其子树至少要 ...

  7. 认识User-Agent

    Windows NT 10 对应操作系统 windows 10 Windows NT 6.3 对应操作系统 windows 8.1 Windows NT 6.2 对应操作系统 windows 8 Wi ...

  8. 【刷题】BZOJ 5249 [2018多省省队联测]IIIDX

    Description [题目背景] Osu听过没?那是Konano最喜欢的一款音乐游戏,而他的梦想就是有一天自己也能做个独特酷炫的音乐游戏.现在,他在世界知名游戏公司KONMAI内工作,离他的梦想也 ...

  9. [洛谷P5190][COCI 2010] PROGRAM

    题目大意:给你$k(k\leqslant10^6)$个数,$f(x)$表示$x$的约数在$k$个数中出现的次数,在这任何数都是$0$的约数.$m(m\leqslant10^6)$次询问,每次给出$l, ...

  10. Flash平台的分析与RIA的趋势

    10月3号,Flash Player 11 和 AIR 3.0正式提供下载,一片安静.最近这两年来,关于Flash的新闻一向是以负面为主,先是 Silverlight 的挑战,然后是 iphone和i ...