洛谷T46780 ZJL 的妹子序列(生成函数)
题面
题解
这居然是一道语文题?
首先不难看出,因为每一次相邻元素交换最多减少一个逆序对,所以至少\(m\)次交换就代表这个序列的逆序对个数为\(m\)
我们考虑一下,假设现在已经放完了\(i-1\)个数,当放入第\(i\)个数的时候会对逆序对个数造成什么影响
如果第\(i\)个数放在最后,新增逆序对个数为\(0\),如果插在最后一个数前面,新增逆序对为\(1\)……
综上,第\(i\)个数插入之后新加的逆序对数为\(0,1,...,i-1\)
那么不难看出,新增逆序对数的这个数列,和原序列是有一一对应关系的
那么我们就可以把它写成生成函数的形式了,题目转为求
\]
的第\(m\)次项的系数
然后就要开始推倒了
\]
所以直接上多项式即可
我们来考虑两个柿子的组合意义
\({1\over 1-x}=\sum_{i=0}^\infty x^i\),那么\(\left(1\over 1-x\right)^n\)的第\(k\)项系数就代表\(a_1+a_2+...+a_n=k\)的非负整数解的个数,根据隔板法可得它的第\(k\)项系数为\({k+n-1\choose n-1}\)
然后考虑后面那个,可以看做有\(n\)个物品,第\(i\)个物品体积为\(i\),求用这些物品填满体积为\(k\)的背包的方案数,有符号
这就相当于是一个背包,因为背包内部是无序的,所以它等价于求和为\(k\)的严格上升子序列的个数
我们设\(f_{i,j}\)表示长度为\(i\),和为\(j\)的严格上升子序列的个数,然后考虑这玩意儿怎么转移
可以新增一个物品,那么方案数为\(f_{i-1,j-i}\)(先把所有物品\(+1\),再新放入一个\(1\)进去)
也可以不放物品,把所有数\(+1\),方案数为\(f_{i,j-i}\)
不过这样转移可能会有不合法的,因为放的数最大值不能超过\(n\),所以要减去\(f_{i-1,j-(n+1)}\)
记得前面要带上符号
即为
\]
因为每种体积的物品最多一个,所以放的物品最多不超过\(O(\sqrt{m})\)
那么多项式\(\prod_{k=1}^n(1-x^k)\)第\(i\)项的系数就是\(\sum_j f_{j,i}\)
然后把这两个多项式卷个积就能得到答案了
//minamoto
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
const int N=2e5+5,P=998244353;
inline int add(R int x,R int y){return x+y>=P?x+y-P:x+y;}
inline int dec(R int x,R int y){return x-y<0?x-y+P:x-y;}
inline int mul(R int x,R int y){return 1ll*x*y-1ll*x*y/P*P;}
int ksm(R int x,R int y){
R int res=1;
for(;y;y>>=1,x=mul(x,x))if(y&1)res=mul(res,x);
return res;
}
int fac[N],ifac[N],f[N],g[N],dp[555][N];
int n,m,res;
inline int C(R int n,R int m){return m>n?0:1ll*fac[n]*ifac[m]%P*ifac[n-m]%P;}
int main(){
// freopen("testdata.in","r",stdin);
scanf("%d%d",&n,&m);
fac[0]=ifac[0]=1;fp(i,1,n+m)fac[i]=mul(fac[i-1],i);
ifac[n+m]=ksm(fac[n+m],P-2);fd(i,n+m-1,1)ifac[i]=mul(ifac[i+1],i+1);
fp(i,0,m)f[i]=C(i+n-1,n-1);
dp[0][0]=1,g[0]=1;
int d=1;
fp(j,2,m)if((1ll*j*(j+1)>>1)>=m){d=j;break;}
fp(i,1,d){
fp(j,0,m){
j>=i?dp[i][j]=dec(dp[i][j-i],dp[i-1][j-i]):0;
j>=n+1?dp[i][j]=add(dp[i][j],dp[i-1][j-n-1]):0;
}
fp(j,0,m)g[j]=add(g[j],dp[i][j]);
}
fp(i,0,m)res=add(res,mul(f[i],g[m-i]));
printf("%d\n",res);
return 0;
}
洛谷T46780 ZJL 的妹子序列(生成函数)的更多相关文章
- BZOJ3675 & 洛谷3648 & UOJ104:[Apio2014]序列分割——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=3675 https://www.luogu.org/problemnew/show/P3648 ht ...
- 洛谷P2501 bzoj1049 [HAOI2006]数字序列
题目链接 bzoj 洛谷 题解 第一问: 假如 \(i < j\) 如果 \(j\)能从\(i\)转移过来 显然中间空隙必须足够 例如:\(50\) \(53\) \(53\) \(52\) 就 ...
- 【洛谷3648/BZOJ3675】[APIO2014]序列分割(斜率优化DP)
题目: 洛谷3648 注:这道题洛谷3648有SPJ,要求输出方案.BZOJ3675数据组数较多但不要求输出方案. 分析: 这可能是我第三次重学斜率优化了--好菜啊 这道题首先一看就是个DP.稍微推一 ...
- 洛谷P4389 付公主的背包--生成函数+多项式
题目链接戳这里 题目描述 有\(n\)件不同的商品,每件物品都有无限个,输出总体积为\([1,m]\)的方案数 思路 直接跑背包有\(30\) 考虑把每个物品的生成函数设出来,对于一件体积为\(v\) ...
- 【洛谷P4144】大河的序列
题目大意:给定一个长度为 N 的序列,求序列中连续区间最大的(或和加与和)是多少. 题解: 引理:任意两个数 \(i, j\),若 \(i>j\),则在二进制表示下,i 对应的二进制串的字典序一 ...
- 【洛谷P3917】异或序列
题目大意:给定一个长度为 N 的序列,每个位置有一个权值,求 \[\sum\limits_{1\le i\le j\le n}(a_i\oplus a_{i+1}...\oplus a_j)\] 的值 ...
- 【洛谷P4462】异或序列
题目大意:给定一个长度为 N 的序列,有 M 组询问,每组询问查询区间 [l,r] 内异或和等于给定常数 K 的区间组数. 题解:对于异或和问题,一般先进行前缀和处理,转化为两个点的的关系.因此,经过 ...
- 洛谷P4389 付公主的背包 [生成函数,NTT]
传送门 同样是回过头来发现不会做了,要加深一下记忆. 思路 只要听说过生成函数的人相信第一眼都可以想到生成函数. 所以我们要求 \[ ans=\prod \sum_n x^{nV}=\prod \fr ...
- 洛谷P4331 [BOI2004] Sequence 数字序列 [左偏树]
题目传送门 数字序列 题目描述 给定一个整数序列 a1,a2,⋅⋅⋅,an ,求出一个递增序列 b1<b2<⋅⋅⋅<bn ,使得序列 ai 和 bi 的各项之差的绝对 ...
随机推荐
- default of c#
[default of c#] 在泛型类和泛型方法中产生的一个问题是,在预先未知以下情况时,如何将默认值分配给参数化类型 T: T 是引用类型还是值类型. 如果 T 为值类型,则它是数值还是结构. 给 ...
- Scala基础:面向对象之对象和继承
对象 object 相当于 class 的单个实例,通常在里面放一些静态的 field 或者 method:在 Scala 中没有静态方法和静态字段,但是可以使用 object 这个语法结构来达到同样 ...
- cf478B-Random Teams 【排列组合】
http://codeforces.com/problemset/problem/478/B B. Random Teams n participants of the competition w ...
- Ros学习——movebase源码解读之amcl
1.amcl的cmakelists.txt文件 add_executable(amcl src/amcl_node.cpp) target_link_libraries(amcl amcl_sens ...
- PHP获取当前文件路径
__FILE__ 是当前路径+文件名dirname(__FILE__)返回当前文件路径的路径部分 例如当前文件是 /home/data/demo/demo.php ,则 __FILE__ 得到的就是完 ...
- hdcloud SOA架构
SOA是一个范式 多租户技术 一个租户可以是任何一个应用--或者是企业内部应用,或外部应用,它需要有自己的安全的和排他的虚拟计算环境.该环境包含了从存储到用户界面的所有或者某些选定的企业架构层.所 ...
- zookeeper 面试题2 比较乱
Zookeeper是什么框架分布式的.开源的分布式应用程序协调服务,原本是Hadoop.HBase的一个重要组件.它为分布式应用提供一致性服务的软件,包括:配置维护.域名服务.分布式同步.组服务等.应 ...
- 关于sudo apt-get update错误 http://archive.canonical.com natty InRelease
sudo apt-get update 错误 http://archive.canonical.com natty InRelease 错误 http://mirror.rootguide.org n ...
- Openssl pkey命令
一.简介 pkey是一个公钥或私钥的处理命令,可以用于打印和转换不同的表单和组件 二.语法 openssl pkey [-inform PEM|DER] [-outform PE|DER] [-in ...
- [C++] Vtable(虚函数表)
Vtable(虚函数表)