bzoj 2820 / SPOJ PGCD 莫比乌斯反演
那啥bzoj2818也是一样的,突然想起来好像拿来当周赛的练习题过,用欧拉函数写掉的。
求$(i,j)=prime$对数
\begin{eqnarray*}\sum_{i=1}^{n}\sum_{j=1}^{m}[(i,j)=p]&=&\sum_{p=2}^{min(n,m)}\sum_{i=1}^{\lfloor\frac{n}{p}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{p}\rfloor}[i⊥j]\newline&=&\sum_{p=2}^{min(n,m)}\sum_{i=1}^{\lfloor\frac{n}{p}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{p}\rfloor}\sum_{d|(i,j)}{\mu(d)}\newline&=&\sum_{p=2}^{min(n,m)}\sum_{d}^{\lfloor\frac{min(n,m)}{p}\rfloor}{\mu(d)}\lfloor\frac{n}{pd}\rfloor\lfloor\frac{m}{pd}\rfloor\end{eqnarray*}
枚举质数的倍数,预处理好,最后底数优化一下。
/** @Date : 2017-09-09 00:24:45
* @FileName: bzoj 2820 莫比乌斯反演.cpp
* @Platform: Windows
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version : $Id$
*/
#include <bits/stdc++.h>
#define LL long long
#define PII pair<int ,int>
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e7+20;
const double eps = 1e-8; int pri[N];
int mu[N];
LL sum[N];
int c = 0;
bool vis[N]; void mobius()
{
MMF(vis);
MMF(mu);
mu[1] = 1;
for(int i = 2; i < N; i++)
{
if(!vis[i])
pri[c++] = i, mu[i] = -1;
for(int j = 0; j < c && i * pri[j] < N; j++)
{
vis[i * pri[j]] = 1;
if(i % pri[j] == 0)
{
mu[i * pri[j]] = 0;
break;
}
else mu[i * pri[j]] = -mu[i];
}
}
for(int i = 0; i < c; i++) //预处理 mu[dp/p]
for(int j = 1; j * pri[i] < N; j++)
sum[j * pri[i]] += mu[j];
for(int i = 1; i < N; i++)
sum[i] += sum[i - 1];
} int main()
{
mobius();
int T;
cin >> T;
while(T--)
{
LL n, m;
scanf("%lld%lld", &n, &m);
LL ans = 0;
LL mi = min(n, m);
LL last;
for(int i = 1; i <= mi; i = last + 1)
{
last = min(n/(n/i), m/(m/i));
ans += (n / i) * (m / i) * (sum[last] - sum[i - 1]);
}
printf("%lld\n", ans);
}
return 0;
}
bzoj 2820 / SPOJ PGCD 莫比乌斯反演的更多相关文章
- SPOJ PGCD(莫比乌斯反演)
传送门:Primes in GCD Table 题意:给定两个数和,其中,,求为质数的有多少对?其中和的范围是. 分析:这题不能枚举质数来进行莫比乌斯反演,得预处理出∑υ(n/p)(n%p==0). ...
- BZOJ 2440 完全平方数(莫比乌斯反演+二分查找)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=23362 题意:定义含有平方数因子的数为完全平方数(平方数因子不包含 ...
- BZOJ 3259 [Sdoi2014]数表 (莫比乌斯反演 + 树状数组)
3529: [Sdoi2014]数表 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 2321 Solved: 1187[Submit][Status ...
- 【BZOJ】2693: jzptab 莫比乌斯反演
[题意]2154: Crash的数字表格 莫比乌斯反演,多组询问,T<=10000. [算法]数论(莫比乌斯反演) [题解]由上一题, $ans=\sum_{g\leq min(n,m)}g\s ...
- BZOJ 3529 [Sdoi2014]数表 (莫比乌斯反演+树状数组+离线)
题目大意:有一张$n*m$的数表,第$i$行第$j$列的数是同时能整除$i,j$的所有数之和,求数表内所有不大于A的数之和 先是看错题了...接着看对题了发现不会做了...刚了大半个下午无果 看了Po ...
- BZOJ 2301 Problem b(莫比乌斯反演+分块优化)
Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数 ...
- BZOJ 3529: [Sdoi2014]数表 [莫比乌斯反演 树状数组]
3529: [Sdoi2014]数表 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1399 Solved: 694[Submit][Status] ...
- BZOJ 2301 Problem b (莫比乌斯反演+容斥)
这道题和 HDU-1695不同的是,a,c不一定是1了.还是莫比乌斯的套路,加上容斥求结果. 设\(F(n,m,k)\)为满足\(gcd(i,j)=k(1\leq i\leq n,1\leq j\le ...
- Bzoj 2190 仪仗队(莫比乌斯反演)
题面 bzoj 洛谷 题解 看这个题先大力猜一波结论 #include <cstdio> #include <cstring> #include <algorithm&g ...
随机推荐
- CodeForces 508E Arthur and Brackets 贪心
题目: E. Arthur and Brackets time limit per test 2 seconds memory limit per test 128 megabytes input s ...
- Navicat for mysql导入.sql数据库大小受限制
把导入单个表的最大限制调一下就行(在my.ini里面就算改了max_allowed_packet也不一定行,因为Navicat貌似并不调用,实际他有自己的一套默认配置,所以需要在Navicat上调整) ...
- alpha冲刺(事后诸葛亮)
[设想和目标] Q1:我们的软件要解决什么问题?是否定义得很清楚?是否对典型用户和典型场景有清晰的描述? "小葵日记"是为了解决18-30岁年轻用户在记录生活时希望得到一美体验友好 ...
- 有关rand(),srand()产生随机数学习总结
看到夏雪冬日的有关rand()和srand()产生随机数的总结,挺好的,学习了,然后又有百度其他人的成果,系统总结一下.本文转自夏雪冬日:http://www.cnblogs.com/heyongga ...
- js中call(),apply(),以及prototype的含义
最近段时间主要学习前端去了,然而所遇到的一些问题我觉得有必要去深究一下 prototype: 1 js中有三种表达方法 类方法,属性方法,原型方法 function People(name) { th ...
- QTemporaryDir及QTemporaryFile建立临时目录及文件夹
版权声明:若无来源注明,Techie亮博客文章均为原创. 转载请以链接形式标明本文标题和地址: 本文标题:QTemporaryDir及QTemporaryFile建立临时目录及文件夹 本文地址 ...
- PHP面向对象之重载
重载技术overloading 重载的基本概念 重载在“通常面向对象语言”中的含义: 是指,在一个类(对象)中,有多个名字相同但形参不同的方法的现象: 类似这样: class C{ functio ...
- Java中int与String间的类型转换
int -> String int i=12345;String s=""; 除了直接调用i.toString();还有以下两种方法第一种方法:s=i+"" ...
- HDU——1573 X问题
又来一发水题. 解同余方程而已,用类似于剩余定理的方法就O了. 直接上代码:(注意要判断是否有解这种情况) #include <iostream> #include <cstdio& ...
- bzoj1061-[Noi2008]志愿者招募-单纯形 & 费用流
有\(n\)天,\(m\)类志愿者,一个第\(i\)类志愿者可以从第\(s_i\)天工作到第\(t_i\)天,第\(i\)天工作的志愿者不少于\(b_i\)个.每一类志愿者都有单价\(c_i\),问满 ...