bzoj 2820 / SPOJ PGCD 莫比乌斯反演
那啥bzoj2818也是一样的,突然想起来好像拿来当周赛的练习题过,用欧拉函数写掉的。
求$(i,j)=prime$对数
\begin{eqnarray*}\sum_{i=1}^{n}\sum_{j=1}^{m}[(i,j)=p]&=&\sum_{p=2}^{min(n,m)}\sum_{i=1}^{\lfloor\frac{n}{p}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{p}\rfloor}[i⊥j]\newline&=&\sum_{p=2}^{min(n,m)}\sum_{i=1}^{\lfloor\frac{n}{p}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{p}\rfloor}\sum_{d|(i,j)}{\mu(d)}\newline&=&\sum_{p=2}^{min(n,m)}\sum_{d}^{\lfloor\frac{min(n,m)}{p}\rfloor}{\mu(d)}\lfloor\frac{n}{pd}\rfloor\lfloor\frac{m}{pd}\rfloor\end{eqnarray*}
枚举质数的倍数,预处理好,最后底数优化一下。
/** @Date : 2017-09-09 00:24:45
* @FileName: bzoj 2820 莫比乌斯反演.cpp
* @Platform: Windows
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version : $Id$
*/
#include <bits/stdc++.h>
#define LL long long
#define PII pair<int ,int>
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e7+20;
const double eps = 1e-8; int pri[N];
int mu[N];
LL sum[N];
int c = 0;
bool vis[N]; void mobius()
{
MMF(vis);
MMF(mu);
mu[1] = 1;
for(int i = 2; i < N; i++)
{
if(!vis[i])
pri[c++] = i, mu[i] = -1;
for(int j = 0; j < c && i * pri[j] < N; j++)
{
vis[i * pri[j]] = 1;
if(i % pri[j] == 0)
{
mu[i * pri[j]] = 0;
break;
}
else mu[i * pri[j]] = -mu[i];
}
}
for(int i = 0; i < c; i++) //预处理 mu[dp/p]
for(int j = 1; j * pri[i] < N; j++)
sum[j * pri[i]] += mu[j];
for(int i = 1; i < N; i++)
sum[i] += sum[i - 1];
} int main()
{
mobius();
int T;
cin >> T;
while(T--)
{
LL n, m;
scanf("%lld%lld", &n, &m);
LL ans = 0;
LL mi = min(n, m);
LL last;
for(int i = 1; i <= mi; i = last + 1)
{
last = min(n/(n/i), m/(m/i));
ans += (n / i) * (m / i) * (sum[last] - sum[i - 1]);
}
printf("%lld\n", ans);
}
return 0;
}
bzoj 2820 / SPOJ PGCD 莫比乌斯反演的更多相关文章
- SPOJ PGCD(莫比乌斯反演)
传送门:Primes in GCD Table 题意:给定两个数和,其中,,求为质数的有多少对?其中和的范围是. 分析:这题不能枚举质数来进行莫比乌斯反演,得预处理出∑υ(n/p)(n%p==0). ...
- BZOJ 2440 完全平方数(莫比乌斯反演+二分查找)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=23362 题意:定义含有平方数因子的数为完全平方数(平方数因子不包含 ...
- BZOJ 3259 [Sdoi2014]数表 (莫比乌斯反演 + 树状数组)
3529: [Sdoi2014]数表 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 2321 Solved: 1187[Submit][Status ...
- 【BZOJ】2693: jzptab 莫比乌斯反演
[题意]2154: Crash的数字表格 莫比乌斯反演,多组询问,T<=10000. [算法]数论(莫比乌斯反演) [题解]由上一题, $ans=\sum_{g\leq min(n,m)}g\s ...
- BZOJ 3529 [Sdoi2014]数表 (莫比乌斯反演+树状数组+离线)
题目大意:有一张$n*m$的数表,第$i$行第$j$列的数是同时能整除$i,j$的所有数之和,求数表内所有不大于A的数之和 先是看错题了...接着看对题了发现不会做了...刚了大半个下午无果 看了Po ...
- BZOJ 2301 Problem b(莫比乌斯反演+分块优化)
Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数 ...
- BZOJ 3529: [Sdoi2014]数表 [莫比乌斯反演 树状数组]
3529: [Sdoi2014]数表 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1399 Solved: 694[Submit][Status] ...
- BZOJ 2301 Problem b (莫比乌斯反演+容斥)
这道题和 HDU-1695不同的是,a,c不一定是1了.还是莫比乌斯的套路,加上容斥求结果. 设\(F(n,m,k)\)为满足\(gcd(i,j)=k(1\leq i\leq n,1\leq j\le ...
- Bzoj 2190 仪仗队(莫比乌斯反演)
题面 bzoj 洛谷 题解 看这个题先大力猜一波结论 #include <cstdio> #include <cstring> #include <algorithm&g ...
随机推荐
- 暑假App
简介 实现了一个计时器APP,程序界面简洁,只有一个时间显示区域和两个图片按钮,一个按钮是开始/暂停,另一个按钮是停止. 功能介绍 一个显示界面,当最小计时单位为0.1秒时,显示为:分钟:秒:0.1秒 ...
- TDGA-需求分析
李青:绝对的技术控,团队中扮演“猪”的角色,勤干肯干,是整个团队的主心骨,课上紧跟老师的步伐,下课谨遵老师的指令,课堂效率高,他的编程格言“没有编不出来的程序,只有解决不了的bug”. 胡金辉:半两油 ...
- Java变量声明,实例化,问题
1.变量在输出前必须实例化,这是因为只有声明,没有分配内存空间 在这种情况下会报错 2.实例化后,尽管没有赋值,可能是默认了吧,但也不会输出null,什么也没有输出 上面的理解可能是错的,a赋值了,就 ...
- mysql 对表格加索引但原表格有重复数据
1.把表中唯一数据搜索创建临时表,最后代替原先表. create table mmmmmm as SELECT * FROM meriadianannotation GROUP BY SeriesID ...
- 2014-2015 ACM-ICPC, NEERC, Eastern Subregional Contest Problem H. Pair: normal and paranormal
题目链接:http://codeforces.com/group/aUVPeyEnI2/contest/229669 时间限制:1s 空间限制:64MB 题目大意:给定一个长度为2n,由n个大写字母和 ...
- web表格代码(5)
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- C语言问卷调查表
你对自己的未来有什么规划?做了哪些准备? 对未来比较迷茫,现在的主要任务是学好专业课 你认为什么是学习?学习有什么用?现在学习动力如何?为什么? 活到老学到老,学习是一辈子的事.在学习的过程 ...
- NULL指针引起的一个linux内核漏洞
NULL指针一般都是应用于有效性检测的,其实这里面有一个约定俗成的规则,就是说无效指针并不一定是 NULL,只是为了简单起见,规则约定只要指针无效了就将之设置为NULL,结果就是NULL这个指针被用来 ...
- MySQL的并发访问控制(锁)
前言:任何的数据集只要支持并发访问模型就必须基于锁机制进行访问控制 锁种类 读锁:共享锁,允许给其他人读,不允许他人写写锁:独占锁, 不允许其他人读和写 锁类型 显示锁:用户手动请求读锁或写锁隐式锁: ...
- 树莓派无显示器、无网线,优盘(U盘)启动,远程桌面
版权声明:若无来源注明,Techie亮博客文章均为原创. 转载请以链接形式标明本文标题和地址: 本文标题:树莓派无显示器.无网线,优盘(U盘)启动,远程桌面 本文地址:http://techi ...