POJ 2112 Optimal Milking(最大流)
题目链接:http://poj.org/problem?id=2112
Description
locations are named by ID numbers K+1..K+C.
Each milking point can "process" at most M (1 <= M <= 15) cows each day.
Write a program to find an assignment for each cow to some milking machine so that the distance the furthest-walking cow travels is minimized (and, of course, the milking machines are not overutilized). At least one legal assignment is possible for all input
data sets. Cows can traverse several paths on the way to their milking machine.
Input
* Lines 2.. ...: Each of these K+C lines of K+C space-separated integers describes the distances between pairs of various entities. The input forms a symmetric matrix. Line 2 tells the distances from milking machine 1 to each of the other entities; line 3 tells
the distances from machine 2 to each of the other entities, and so on. Distances of entities directly connected by a path are positive integers no larger than 200. Entities not directly connected by a path have a distance of 0. The distance from an entity
to itself (i.e., all numbers on the diagonal) is also given as 0. To keep the input lines of reasonable length, when K+C > 15, a row is broken into successive lines of 15 numbers and a potentially shorter line to finish up a row. Each new row begins on its
own line.
Output
Sample Input
2 3 2
0 3 2 1 1
3 0 3 2 0
2 3 0 1 0
1 2 1 0 2
1 0 0 2 0
Sample Output
2
Source
题目描写叙述:(转)
k个机器,每一个机器最多服务m头牛。
c头牛,每一个牛须要1台机器来服务。
告诉你牛与机器每一个之间的直接距离。
问:让全部的牛都被服务的情况下,使走的最远的牛的距离最短,求这个距离。
解题报告:
二分枚举距离,实际距离满足当前枚举距离限制的能够增加这条边。
枚举的距离中符合条件的最小值就是答案。
建图过程:
一个超级原点,和每一个机器的容量都是m。
一个超级汇点,每头牛和汇点的容量都是1.
机器i与牛j之间的距离假设小于等于当前枚举值mid,连接i,j。容量1.
这样最大流的意义就是可以服务的牛最多是多少,假设最大流等于牛的总数c。表示当前枚举值mid符合条件,同一时候说明mid值还可能可以更小。更新二分右边界r = mid - 1.
假设小于牛的总数。说明mid偏小,更新二分左边界,l = mid + 1.
机器与牛之间的最短距离能够用floyd预处理出来。
代码例如以下:
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
const int MAXN = 310;//点数的最大值
const int MAXM = 40010;//边数的最大值
const int INF = 0x3f3f3f3f;
struct Edge
{
int to,next,cap,flow;
} edge[MAXM]; //注意是MAXM
int tol;
int head[MAXN];
int gap[MAXN],dep[MAXN],cur[MAXN];
int k, c, m;
int s, e;//源点,汇点
int map[MAXN][MAXN];
int mid;//二分中间值;
int num;//矩阵的规格;
//加边,单向图三个參数,双向图四个參数
void addedge(int u,int v,int w,int rw = 0)
{
edge[tol].to = v;
edge[tol].cap = w;
edge[tol].flow = 0;
edge[tol].next = head[u];
head[u] = tol++;
edge[tol].to = u;
edge[tol].cap = rw;
edge[tol].flow = 0;
edge[tol].next = head[v];
head[v] = tol++;
}
int Q[MAXN]; void BFS(int start,int end)
{
memset(dep,-1,sizeof(dep));
memset(gap,0,sizeof(gap));
gap[0] = 1;
int front = 0, rear = 0;
dep[end] = 0;
Q[rear++] = end;
while(front != rear)
{
int u = Q[front++];
for(int i = head[u]; i != -1; i = edge[i].next)
{
int v = edge[i].to;
if(dep[v] != -1)continue;
Q[rear++] = v;
dep[v] = dep[u] + 1;
gap[dep[v]]++;
}
}
}
int S[MAXN];
//输入參数:起点、终点、点的总数
//点的编号没有影响,仅仅要输入点的总数
int sap(int start,int end,int N)
{
BFS(start,end);
memcpy(cur,head,sizeof(head));
int top = 0;
int u = start;
int ans = 0;
while(dep[start] < N)
{
if(u == end)
{
int Min = INF;
int inser;
for(int i = 0; i < top; i++)
if(Min > edge[S[i]].cap - edge[S[i]].flow)
{
Min = edge[S[i]].cap - edge[S[i]].flow;
inser = i;
}
for(int i = 0; i < top; i++)
{
edge[S[i]].flow += Min;
edge[S[i]^1].flow -= Min;
}
ans += Min;
top = inser;
u = edge[S[top]^1].to;
continue;
}
bool flag = false;
int v;
for(int i = cur[u]; i != -1; i = edge[i].next)
{
v = edge[i].to;
if(edge[i].cap - edge[i].flow && dep[v]+1 == dep[u])
{
flag = true;
cur[u] = i;
break;
}
}
if(flag)
{
S[top++] = cur[u];
u = v;
continue;
}
int Min = N;
for(int i = head[u]; i != -1; i = edge[i].next)
if(edge[i].cap - edge[i].flow && dep[edge[i].to] < Min)
{
Min = dep[edge[i].to];
cur[u] = i;
}
gap[dep[u]]--;
if(!gap[dep[u]])return ans;
dep[u] = Min + 1;
gap[dep[u]]++;
if(u != start)u = edge[S[--top]^1].to;
}
return ans;
} void Foyld()//两个点的最短距离
{
for(int k = 1; k <= num; k++)
{
for(int i = 1; i <= num; i++)
{
for(int j = 1; j <= num; j++)
{
if(map[i][j] > map[i][k]+map[k][j])
{
map[i][j] = map[i][k]+map[k][j];
}
}
}
}
}
void init()
{
tol = 0;
memset(head,-1,sizeof(head));
for(int i = 1; i <= k; i++)//k个挤奶器
{
for(int j = k+1; j <= num; j++)//c头奶牛
{
if(map[i][j] <= mid)
{
//假设奶牛到挤奶器的最短距离<=mid,建权值为1的边
addedge(j,i,1);
}
}
}
for(int i = 1; i <= k; i++)
{
addedge(i,e,m);//每一个挤奶器最多能够挤k头牛
}
for(int i = k+1; i <= num; i++)
{
addedge(s,i,1);//建一条源点到奶牛的边。权值为1
}
}
int main()
{
while(~scanf("%d%d%d",&k,&c,&m))
{
num = k+c;
s = 0;//源点
e = num+1;//汇点
int nv = num+2; //结点总数
for(int i = 1; i <= num; i++)
{
for(int j = 1; j <= num; j++)
{
scanf("%d",&map[i][j]);
if(i!=j && !map[i][j])
{
map[i][j] = INF;
}
}
}
Foyld();
int l = 0, r = INF;
while(l <= r)
{
mid = (r+l)/2;
init();
if(sap(s, e, nv) == c)//最大流等于c
{
r = mid-1;
}
else
{
l = mid+1;
}
}
printf("%d\n",l);
}
return 0;
}
POJ 2112 Optimal Milking(最大流)的更多相关文章
- POJ 2112 Optimal Milking(最大流+二分)
题目链接 测试dinic模版,不知道这个模版到底对不对,那个题用这份dinic就是过不了.加上优化就WA,不加优化TLE. #include <cstdio> #include <s ...
- POJ 2112 Optimal Milking (二分 + floyd + 网络流)
POJ 2112 Optimal Milking 链接:http://poj.org/problem?id=2112 题意:农场主John 将他的K(1≤K≤30)个挤奶器运到牧场,在那里有C(1≤C ...
- POJ 2112 Optimal Milking (二分+最短路径+网络流)
POJ 2112 Optimal Milking (二分+最短路径+网络流) Optimal Milking Time Limit: 2000MS Memory Limit: 30000K To ...
- Poj 2112 Optimal Milking (多重匹配+传递闭包+二分)
题目链接: Poj 2112 Optimal Milking 题目描述: 有k个挤奶机,c头牛,每台挤奶机每天最多可以给m头奶牛挤奶.挤奶机编号从1到k,奶牛编号从k+1到k+c,给出(k+c)*(k ...
- POJ 2112 Optimal Milking (二分 + 最大流)
题目大意: 在一个农场里面,有k个挤奶机,编号分别是 1..k,有c头奶牛,编号分别是k+1 .. k+c,每个挤奶机一天最让可以挤m头奶牛的奶,奶牛和挤奶机之间用邻接矩阵给出距离.求让所有奶牛都挤到 ...
- POJ 2112—— Optimal Milking——————【多重匹配、二分枚举答案、floyd预处理】
Optimal Milking Time Limit:2000MS Memory Limit:30000KB 64bit IO Format:%I64d & %I64u Sub ...
- POJ 2112 Optimal Milking (Dinic + Floyd + 二分)
Optimal Milking Time Limit: 2000MS Memory Limit: 30000K Total Submissions: 19456 Accepted: 6947 ...
- POJ 2112 Optimal Milking(二分+最大流)
http://poj.org/problem?id=2112 题意: 现在有K台挤奶器和C头奶牛,奶牛和挤奶器之间有距离,每台挤奶器每天最多为M头奶挤奶,现在要安排路程,使得C头奶牛所走的路程中的最大 ...
- POJ - 2112 Optimal Milking (dijkstra + 二分 + 最大流Dinic)
(点击此处查看原题) 题目分析 题意:在一个农场中有k台挤奶器和c只奶牛,每个挤奶器最多只能为m只奶牛挤奶,每个挤奶器和奶牛都视为一个点,将编号1~k记为挤奶器的位置,编号k+1~k+c记为奶牛的位置 ...
随机推荐
- Codeforces Round #300 D. Weird Chess 水题
D. Weird Chess Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/538/proble ...
- 模型的性能评估(二) 用sklearn进行模型评估
在sklearn当中,可以在三个地方进行模型的评估 1:各个模型的均有提供的score方法来进行评估. 这种方法对于每一种学习器来说都是根据学习器本身的特点定制的,不可改变,这种方法比较简单.这种方法 ...
- textbox约束输入值问题解答
网上很多关于文本框只能输入数字的,今天又找了一遍,发现以前的写法居然有点问题! onkeypress="if (event.keyCode<48 || event.keyCode> ...
- Java解读内存,优化编程
1.别用new Boolean 在很多场景中Boolean类型是必须的,比如JDBC中boolean类型的set与get都是通过Boolean封装传递的,大部分ORM也是用Boolean来封装bool ...
- Virtual Treeview 安装以及入门
Virtual Treeview是一套Delphi下优秀的VCL控件,代码质量高,使用灵活.功能强大.性能非常好,可以用于表达Treeview和表格类数据.它的代码现在托管在google code上. ...
- node升级后,项目中的node-sass报错的问题
之前可能因为电脑不知道哪抽风了,在npm build的时候进入就卡在入口的地方,启动express的时候也会,所以就重装了一下node 重装node 其实也不是重装,就是使用 where node 查 ...
- 史上最全的Unity面试题(持续更新总结。。。。。。) 包含答案的Unity面试题
这个是我刚刚整理出的Unity面试题,为了帮助大家面试,同时帮助大家更好地复习Unity知识点,如果大家发现有什么错误,(包括错别字和知识点),或者发现哪里描述的不清晰,请在下面留言,我会重新更新,希 ...
- frp, https, http, nginx 多服务, ssl等配置
server { listen 80 default_server; listen [::]:80 default_server; root /var/www/html; # Add index.ph ...
- shell执行时文件命名导致的错误
1.脚本check_nginx.sh的内容如下: #!/bin/bash count=$(ps -ef | grep nginx | grep -v grep | wc -l) echo $count ...
- iOS网络编程解析协议二:XML数据传输解析
XML两种解析方式,一种是SAX,NSXMLParser是SAX方法解析,另一种是DOM(Document Object Model); 区别: SAX: 只能读,不能修改,只能顺序访问,适合解析大型 ...