numpy学习,为后续机器学习铺垫

参考网址

#!/usr/bin/python
#coding=utf-8
#__author__='dahu'
#
from numpy import *
import numpy as np a = np.arange(12).reshape(2, 2, 3) # 2个2行3列的数组
print a, type(a) # ndarray
print a.shape ,'3行5列'
print a.ndim ,'轴的个数'
print a.size ,'总个数'
print a.dtype ,'每个元素的类型'
a = array(range(5)) # 创建数组
print a, type(a), 'array是工厂函数,生成数组'
b = array(tuple(range(5)))
# print b, type(b)
print linspace(1, 2, 11) ,'[start,stop],还有一个是数量'
print arange(1, 2, 0.1) , '类似range,不过可以搞浮点数'
fl = array(linspace(1, 2, 11))
print fl.dtype ,'用linspace生成浮点数组,查看每个元素类型,正确。'
c = array(zip(range(5), range(10, 15), range(20, 25)))
print c,'配合zip生成数组,纵向的'
d = array((range(5), range(10, 15), range(20, 25)))
print d,'横向的生成数组'
# print zeros((3,4)) #全0数组
# print ones((3,4)) #全1数组
print empty((3, 4)) # 函数 empty 创建一个内容随机并且依赖与内存状态的数组,这个没怎么明白 #打印数组
''' 打印规则:
最后的轴从左到右打印
次后的轴从顶向下打印
剩下的轴从顶向下打印,每个切片通过一个空行与下一个隔开
'''
print np.arange(6),'1维'
print np.arange(12).reshape(4,3),'2维'
print np.arange(24).reshape(2,3,4),'3维' # np.set_printoptions(threshold='nan') #强制打印整个数组
print arange(10000).reshape(100,100),'数组太大,省略中间部分只打印角落' #基本运算
print np.arange(10,15)-np.arange(5),'数组减法,按元素运算'
print np.arange(5)**2
print np.arange(5)*np.arange(10,15),'数组相乘,对应元素相乘'
a=np.arange(12).reshape(3,4)
a+=1
print a,'操作+=,*=也是针对每个元素来操作的'
print np.fromfunction(lambda x,y:x*y,(3,4)),'也算是构造数组,由函数生成'
# print a,a.shape
# a=a.reshape(2,2,3)
# print a
for ele in a.flat:
print ele, #对每个数组元素进行迭代,多维也可以
c=[ele for ele in a.flat]
print np.array(c).reshape(3,4) ,'迭代完了再转换成数组,不耽误'
e= np.floor(10*np.random.random((2,12))) #floor取整数位
print e
print np.hsplit(e,4),'纵向切'
print np.vsplit(e,2),'横向切'
/usr/bin/python2. /home/dahu/Homework/GMM的EM算法实现/numpy练习.py
[[[ ]
[ ]] [[ ]
[ ]]] <type 'numpy.ndarray'>
(, , ) 3行5列
轴的个数
总个数
int64 每个元素的类型
[ ] <type 'numpy.ndarray'> array是工厂函数,生成数组
[ . 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 . ] [start,stop],还有一个是数量
[ . 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9] 类似range,不过可以搞浮点数
float64 用linspace生成浮点数组,查看每个元素类型,正确。
[[ ]
[ ]
[ ]
[ ]
[ ]] 配合zip生成数组,纵向的
[[ ]
[ ]
[ ]] 横向的生成数组
[[ 0.00000000e+000 4.94065646e-324 9.88131292e-324 1.48219694e-323]
[ 1.97626258e-323 2.47032823e-323 2.96439388e-323 3.45845952e-323]
[ 3.95252517e-323 4.44659081e-323 4.94065646e-323 5.43472210e-323]]
[ ] 1维
[[ ]
[ ]
[ ]
[ ]] 2维
[[[ ]
[ ]
[ ]] [[ ]
[ ]
[ ]]] 3维
[[ ..., ]
[ ..., ]
[ ..., ]
...,
[ ..., ]
[ ..., ]
[ ..., ]] 数组太大,省略中间部分只打印角落
[ ] 数组减法,按元素运算
[ ]
[ ] 数组相乘,对应元素相乘
[[ ]
[ ]
[ ]] 操作+=,*=也是针对每个元素来操作的
[[ . . . .]
[ . . . .]
[ . . . .]] 也算是构造数组,由函数生成
[[ ]
[ ]
[ ]] 迭代完了再转换成数组,不耽误
[[ . . . . . . . . . . . .]
[ . . . . . . . . . . . .]]
[array([[ ., ., .],
[ ., ., .]]), array([[ ., ., .],
[ ., ., .]]), array([[ ., ., .],
[ ., ., .]]), array([[ ., ., .],
[ ., ., .]])] 纵向切
[array([[ ., ., ., ., ., ., ., ., ., ., ., .]]), array([[ ., ., ., ., ., ., ., ., ., ., ., .]])] 横向切 Process finished with exit code

numpy 练习的更多相关文章

  1. 利用Python进行数据分析(5) NumPy基础: ndarray索引和切片

    概念理解 索引即通过一个无符号整数值获取数组里的值. 切片即对数组里某个片段的描述. 一维数组 一维数组的索引 一维数组的索引和Python列表的功能类似: 一维数组的切片 一维数组的切片语法格式为a ...

  2. 利用Python进行数据分析(4) NumPy基础: ndarray简单介绍

    一.NumPy 是什么 NumPy 是 Python 科学计算的基础包,它专为进行严格的数字处理而产生.在之前的随笔里已有更加详细的介绍,这里不再赘述. 利用 Python 进行数据分析(一)简单介绍 ...

  3. 利用Python进行数据分析(6) NumPy基础: 矢量计算

    矢量化指的是用数组表达式代替循环来操作数组里的每个元素. NumPy提供的通用函数(既ufunc函数)是一种对ndarray中的数据进行元素级别运算的函数. 例如,square函数计算各元素的平方,r ...

  4. python安装numpy、scipy和matplotlib等whl包的方法

    最近装了python和PyCharm开发环境,但是在安装numpy和matplotlib等包时出现了问题,现总结一下在windows平台下的安装方法. 由于现在找不到了工具包新版本的exe文件,所以采 ...

  5. 深入理解numpy

    一.为啥需要numpy python虽然说注重优雅简洁,但它终究是需要考虑效率的.别说运行速度不是瓶颈,在科学计算中运行速度就是瓶颈. python的列表,跟java一样,其实只是一维列表.一维列表相 ...

  6. Python Numpy,Pandas基础笔记

    Numpy Numpy是python的一个库.支持维度数组与矩阵计算并提供大量的数学函数库. arr = np.array([[1.2,1.3,1.4],[1.5,1.6,1.7]])#创建ndarr ...

  7. broadcasting Theano vs. Numpy

    broadcasting Theano vs. Numpy broadcast mechanism allows a scalar may be added to a matrix, a vector ...

  8. python之numpy

    一.矩阵的拼接合并 列拼接:np.column_stack() >>> import numpy as np >>> a = np.arange(9).reshap ...

  9. win7系统下python安装numpy,matplotlib,scipy和scikit-learn

    1.安装numpy,matplotlib,scipy和scikit-learn win7系统下直接采用pip或者下载源文件进行安装numpy,matplotlib,scipy时会遇到各种问题,这是因为 ...

  10. 给numpy矩阵添加一列

    问题的定义: 首先我们有一个数据是一个mn的numpy矩阵现在我们希望能够进行给他加上一列变成一个m(n+1)的矩阵 import numpy as np a = np.array([[1,2,3], ...

随机推荐

  1. Codeforces 932.D Tree

    D. Tree time limit per test 2 seconds memory limit per test 512 megabytes input standard input outpu ...

  2. hihocoder 1509异或排序

    描述 给定一个长度为 n 的非负整数序列 a[1..n] 你需要求有多少个非负整数 S 满足以下两个条件: (1).0 ≤ S < 2^60 (2).对于所有 1 ≤ i < n ,有 ( ...

  3. [Java多线程]-学习多线程需要来了解哪些东西?(concurrent并发包的数据结构和线程池,Locks锁,Atomic原子类)

    前言:刚学习了一段机器学习,最近需要重构一个java项目,又赶过来看java.大多是线程代码,没办法,那时候总觉得多线程是个很难的部分很少用到,所以一直没下决定去啃,那些年留下的坑,总是得自己跳进去填 ...

  4. eclipse插件大全(官方)

    eclipse插件大全:http://marketplace.eclipse.org/metrics/successful_installs 各个版本插件: http://download.eclip ...

  5. 前端PHP入门-002-安装WAMP的集成环境md

    > 第一次讲PHP,让我感觉还是满好玩的,一种新的知识的学习,需要我们努力! > 这次PHP课程计划是15天快速入门的课程! 只是单独的讲PHP语言,不涉及很深的内容,只是想让web前端的 ...

  6. java多线程机制1(线程创建的两种方式)

    进程:正在运行的程序.(即程序在内存中开辟了一片空间) 线程:是进程的执行单元. 一个进程至少包含了一个多个线程. 多线程是不是可以提高效率:多线程可以合理的利用系统的资源,提高效率是相对的.因为cp ...

  7. GridControl详解(六)样式设置

    表格样式:全局设置 例子: 例子: 列样式:只作用于当前的列 通用样式:外观设定 注意:样式设定都是相同的,Appearance前缀.

  8. GridControl详解(三)列数据的格式设置

    为了测试方便,我们加入新的3列,格式分别是数据,时间,字符串.代码增加下列部分: //格式增加 dt.Columns.Add("数据",typeof(decimal)); dt.C ...

  9. Javascript判断Chrome浏览器

    今天分享一下如何通过Javascript来判断Chrome浏览器,这里是通过userAgent判断的,检测一下userAgent返回的字符串里面是否包含“Chrome”, 具体怎么检测是通过index ...

  10. 【CodeForces】790 C. Bear and Company 动态规划

    [题目]C. Bear and Company [题意]给定大写字母字符串,交换相邻字符代价为1,求最小代价使得字符串不含"VK"子串.n<=75. [算法]动态规划 [题解 ...