2022极端高温!机器学习如何预测森林火灾?⛵ 万物AI
作者:ShowMeAI编辑部
声明:版权所有,转载请联系平台与作者并注明出处
收藏ShowMeAI查看更多精彩内容
今年夏天,重庆北碚区山火一路向国家级自然保护区缙云山方向蔓延。为守护家园,数万名重庆市民化身志愿者,与各路应急救援人员一起,积极参与山火扑灭工作。经过4天奋战,北碚山火得到有效封控。这是团结和文化的证明,也是组织和科技的胜利。
摩托大军运送物资、一呼百应的志愿者报名、休整时的冰棍、送别时的西瓜···相信你同我一样,刷着视频眼眶红了一次又一次。
而以火灭火背后的风向精准预测、无人机喷水和发射灭火弹、三维测绘评估方位重要程度挖隔离带···更让我们体会到科技进步带来的效率提升。
现在 AI 技术已经在发挥作用帮助我们与时间赛跑,挽回更多生命和损失。本文我们也介绍一下『机器学习』和『深度学习』等人工智能技术在森林火灾扑救过程中的应用。
森林大火肆虐,触目惊心
8月9日以来,我国出现了罕见的极端高温天气,南方多省温度连创新高,部分地区如重庆市北碚、巴南、大足、长寿、江津等地先后发生多起森林火灾。
近年来,全球极端天气出现愈发频繁。今夏全球气温急剧上升,增加了热浪、干旱和野火等灾害的可能性。
2020岁末年初的澳大利亚森林大火肆虐6个月,将悉尼的天空烧成了血色。随后的美国加州山火烧过的面积是8457平方公里,相当于11个纽约市。2021年3-4月印度奥里萨邦的 Simplipal 森林大火也引起了国际社会的关注,大火严重影响了原本就脆弱平衡的 Simplipal 生物圈保护区,并对当地环境以及财产和生计造成了难以计数的破坏。
据统计,全球每年平均发生 20 万起森林火灾。每年被森林大火烧毁的面积占世界森林总面积的1%以上。中国每年发生森林火灾1万余起,年火灾面积占中国森林总面积的5%以上。
对抗森林火灾,AI 在行动
预测森林火灾的关键要素是快速检测。但是传统的监视费用昂贵且受主观因素的影响较大,人们逐渐将目光转向三类自动化的解决方案:卫星、红外扫描仪、局部传感器,如 NASA TERRA / AQUA 卫星、NOAA GOES 卫星、中分辨率光谱成像仪 MODIS、可见光红外成像辐射组件 VIIRS 等。
随着硬件的发展和数据传输的便利,数据的实时采集、存储和处理成本已经足够低廉。卫星和传感器等收集到足够多的数据之后,就可以使用自动化的数据挖掘工具,对原始数据进行分析挖掘,为高层决策者提取有效信息。
小型卫星的图像和 AI 技术,正在被引入森林消防领域。通过数量众多的小型卫星拍摄的高清图片,对森林状况进行实时的监控,并通过 AI 进行数据分析,以实现及时的预防和报警。
事实上,机器学习技术已经应用到火灾探测领域,例如:北美森林大火预测使用卫星图像和支持向量机算法获得了75%的准确率,斯洛文尼亚森林火灾使用卫星与气象数据和随机森林、决策树算法进行探测。
一家叫做 Salo Science 的公司,正在通过 AI 技术,研究对森林火灾风险评定的工作。他们在开发的 AI 产品,同样是基于卫星图像和数据,通过对树木等情况,综合地形、地势、可积燃物等因素的分析,给消防人员提供森林的区域地形图以及风险指示数据,帮助他们在危险来临时,作出更好的选择。
基于机器学习AI森林火灾预测
利用机器学习如何对森林火灾的发生做出预测?ShowMeAI 爆肝跑通了一个项目。查看完整项目和代码,可以点击文末『阅读原文』,或访问下方链接:
本次项目的数据来自刚刚提到的 NASA 的资源管理系统火灾信息(FIRMS)卫星数据和 NASA 的 MODIS(中分辨率成像光谱仪)仪器对 2021年印度森林野火 案例的纪录。
实战数据集下载(百度网盘):公众号『ShowMeAI研究中心』回复『实战』,或者访问 https://www.showmeai.tech/article-detail/305 获取本文『2021年印度森林火灾数据集』
项目核心流程包含以下步骤:数据探索、数据清洗&处理、数据拆分、评估指标、建模与预估。
在完成对连续值字段、类别型字段的数据分布探索后,使用缺失值填充、清洗不相关的数据、幅度缩放与归一化等对数据进行处理。以数据中的confidence
为目标标签,进行回归建模,并使用均方误差 MSE、平均绝对误差 MAE、均方根误差 RMSE、R 平方分数等指标进行评估。
项目使用了梯度提升回归树 GBDT 和 决策树两种方式进行建模,我们借助雷达图来比较GBDT和回归树模型,对比它们在森林火灾预测场景下的效果。
内容涉及数据分析处理的技能,欢迎大家查阅 ShowMeAI 对应的教程和工具速查表,快学快用。
深度学习在森林火灾中的应用实践
在 2018 年损失惨重的加州大火中,就有一家叫 CrowdAI 的公司通过卫星数据,综合图像视觉技术参与了救援。
CrowdAI 使用 Spacenet 和 Deepglobe 的卫星图像,以及 DigitalGlobe 和 Planet Labs 的数据,训练卷积神经网络。只需一秒钟的时间,就能预测和评估受灾程度,再将评估结果报告给救援指挥中心,帮助科学调配救援资源,制定更科学的救援方案。
借助于 CrowdAI 自定义的深度学习模型,除了标注常规的房屋建筑,还扩大到了独立结构,比如车棚、公用设施棚和谷仓等。在那一次的火灾中,从卫星图像中识别出结构后,根据受灾前后的图像对比, AI 模型用红点标识出损坏所在的位置。
拓展到整个地区,通过标记点的数量定出受灾的严重程度,就能用不同的颜色区别出受灾的程度。
最后在 Google Earth 或 ArcGIS 上标记出来,就能为救灾和重建工作做出指导。
CrowdAI 利用卫星图像,通过计算机视觉等技术,提供数据服务,并把精力主要投入在了自然灾害方面。很多救援人员和政府官员,通过这些快速生成的数据,更合理地协调了救援工作,提升了解决紧要问题的效率。
CrowdAI 还与 Facebook AI 进行过合作,研究飓风和火灾造成损失的评估工作。他们的研究成果『From Satellite Imagery to Disaster Insights』也被 NeurIPS 会议所接受。
在论文中,他们的研究获到了很好的成绩:在 2017 年德克萨斯州附近被飓风哈维损坏的道路识别时,达到了 88.8% 的准确率,而在 Santa Rosa 火灾中识别损坏建筑物时准确率达到了 81.1%。
总结
截至2019年的统计数据,与『森林火灾的人工智能应用』这一主题相关的出版物已有300余条,且近年来发表『森林火灾』『机器学习』主题的文章数量急剧增加(数据来源:Scopus数据库)。我们正在将越来越多的目光投向科技,寻求高效、安全的灾害预警与解决方案。
在科技到达不了的地方,我们会用团结和信仰去踏平,正如这次的重庆。
参考资料
- AI实战 | 基于机器学习的AI森林火灾预测(附代码):https://www.showmeai.tech/article-detail/326
- 图解数据分析:从入门到精通系列教程:https://www.showmeai.tech/tutorials/33
- 数据科学工具库速查表 | Pandas 速查表:https://www.showmeai.tech/article-detail/101
- 数据科学工具库速查表 | Seaborn 速查表:https://www.showmeai.tech/article-detail/105
- From Satellite Imagery to Disaster Insights:https://aiforsocialgood.github.io/2018/pdfs/track1/23_aisg_neurips2018.pdf
2022极端高温!机器学习如何预测森林火灾?⛵ 万物AI的更多相关文章
- 100天搞定机器学习|Day56 随机森林工作原理及调参实战(信用卡欺诈预测)
本文是对100天搞定机器学习|Day33-34 随机森林的补充 前文对随机森林的概念.工作原理.使用方法做了简单介绍,并提供了分类和回归的实例. 本期我们重点讲一下: 1.集成学习.Bagging和随 ...
- Spark 实践——用决策树算法预测森林植被
本文基于<Spark 高级数据分析>第4章 用决策树算法预测森林植被集. 完整代码见 https://github.com/libaoquan95/aasPractice/tree/mas ...
- 数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)的区别是什么? 数据科学(data science)和商业分析(business analytics)之间有什么关系?
本来我以为不需要解释这个问题的,到底数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)有什么区别,但是前几天因为有个学弟问我,我想了想发现我竟然也回答 ...
- 机器学习是万能的吗?AI落地有哪些先决条件?
机器学习是万能的吗?AI落地有哪些先决条件? https://mp.weixin.qq.com/s/9rNY2YA3BMpoY8NQ_rVIjQ 1.引言 入门机器学习或从事其相关工作前,不知道你思考 ...
- 机器学习入门-随机森林预测温度-不同参数对结果的影响调参 1.RandomedSearchCV(随机参数组的选择) 2.GridSearchCV(网格参数搜索) 3.pprint(顺序打印) 4.rf.get_params(获得当前的输入参数)
使用了RamdomedSearchCV迭代100次,从参数组里面选择出当前最佳的参数组合 在RamdomedSearchCV的基础上,使用GridSearchCV在上面最佳参数的周围选择一些合适的参数 ...
- 机器学习入门-随机森林温度预测-增加样本数据 1.sns.pairplot(画出两个关系的散点图) 2.MAE(平均绝对误差) 3.MAPE(准确率指标)
在上一个博客中,我们构建了随机森林温度预测的基础模型,并且研究了特征重要性. 在这个博客中,我们将从两方面来研究数据对预测结果的影响 第一方面:特征不变,只增加样本的数据 第二方面:增加特征数,增加样 ...
- 机器学习入门-随机森林温度预测的案例 1.datetime.datetime.datetime(将字符串转为为日期格式) 2.pd.get_dummies(将文本标签转换为one-hot编码) 3.rf.feature_importances_(研究样本特征的重要性) 4.fig.autofmt_xdate(rotation=60) 对标签进行翻转
在这个案例中: 1. datetime.datetime.strptime(data, '%Y-%m-%d') # 由字符串格式转换为日期格式 2. pd.get_dummies(features) ...
- 4-Spark高级数据分析-第四章 用决策树算法预测森林植被
预测是非常困难的,更别提预测未来. 4.1 回归简介 随着现代机器学习和数据科学的出现,我们依旧把从“某些值”预测“另外某个值”的思想称为回归.回归是预测一个数值型数量,比如大小.收入和温度,而分类则 ...
- Python机器学习笔记——随机森林算法
随机森林算法的理论知识 随机森林是一种有监督学习算法,是以决策树为基学习器的集成学习算法.随机森林非常简单,易于实现,计算开销也很小,但是它在分类和回归上表现出非常惊人的性能,因此,随机森林被誉为“代 ...
随机推荐
- 如何通过C#/VB.NET设置Word文档段落缩进
缩进是指调整文本与页面边界之间的距离.在水平标尺,有四个段落缩进滑块:首行缩进.悬挂缩进.左缩进以及右缩进.在对于word文档的录入时,常常需要注意录入的格式,通过合理地设置段落格式,可以让文稿看起来 ...
- 简单的java代码审计
描述 很简单的代码审计 java安全--Fastjson反序列化 java安全--SQL注入 Fastjson 反序列化 首先看一下配置文件,对于Maven项目,我们首先从pom.xml文件开始审计引 ...
- dotnet 设计规范 · 数组定义
✓ 建议在公开的 API 使用集合而不是数组.集合可以提供更多的信息. X 不建议设置数组类型的字段为只读.虽然用户不能修改字段,但是可以修改字段里面的元素.如果需要一个只读的集合,建议定义为只读集合 ...
- window环境导入odbc数据源
<ODBC指南>中只介绍了window环境如何配置odbc数据源,但是没有介绍如何导入数据源驱动,这里做个补充. 在没有导入数据源驱动之前,按照文档操作是查不到kingbaseES的odb ...
- mybatis 输出sql日志
logging.level.com.dsmp.server.core.pgsqldao=debug com.dsmp.server.core.pgsqldao 为包名
- 输入法词库解析(三)紫光拼音词库.uwl
详细代码:https://github.com/cxcn/dtool 前言 .uwl 是紫光拼音输入法(现在叫华宇拼音输入法)使用的词库. 解析 紫光的词库有点复杂,拼音用的索引,但是拼音表没有写在词 ...
- opencv videocapture
import time import cv2 import numpy as np from os import path import pickle ''' 关于camera id 此处需要稍微说几 ...
- Elasticsearch 8.X 节点角色划分深入详解
文章转载自: https://mp.weixin.qq.com/s/3486iH3VH7TV6lza-a7adQ 0.问题引出 如果你的 Elasticsearch 集群是 7.9 之前的版本,在配置 ...
- Secret概述
Secret 概述 Kubernetes Secret 对象可以用来储存敏感信息,例如:密码.OAuth token.ssh 密钥等.如果不使用 Secret,此类信息可能被放置在 Pod 定义中或者 ...
- Maven+SpringMVC+Dubbo 简单的入门demo配置
转载自:https://cloud.tencent.com/developer/article/1010636 之前一直听说dubbo,是一个很厉害的分布式服务框架,而且巴巴将其开源,这对于咱们广大程 ...