文心一言 VS chatgpt (15)-- 算法导论3.2 4~5题
四、函数 $\lceil \lg n \rceil !$ 多项式有界吗?函数 $\lceil \lg \lg n \rceil !$ 多项式有界吗?
文心一言:

chatgpt:
对于第一个问题,函数 $\lceil \lg n \rceil !$ 是阶乘的形式,可以证明它是超多项式增长的,因此不是多项式有界的。
对于第二个问题,函数 $\lceil \lg \lg n \rceil !$ 的增长速度比 $\lceil \lg n \rceil !$ 慢很多。虽然 $\lceil \lg \lg n \rceil !$ 不是多项式,但是它是多项式有界的,也就是说,存在一个多项式 $p(n)$ 和常数 $c$,使得当 $n$ 足够大时,$\lceil \lg \lg n \rceil ! \leq c \cdot p(n)$。这可以使用斯特林公式来证明。

五、如下两个函数中,哪一个渐进更大些:$\lg(\lg^* n)$还是 $\lg^*(\lg n)$?
文心一言:

chatgpt:
在这里,我们将 $\lg^* n$ 和 $\lg^*(\lg n)$ 看作一个函数 $f(n)$ 和 $g(n)$,分别表示对数幂函数的不同变形。
首先,我们知道对数幂函数增长非常缓慢,它们比多项式增长更慢,但比指数增长更快。因此,我们可以考虑使用渐进符号来比较这两个函数的上界关系。
由于 $\lg(\lg^* n) = \Theta(\lg f(n))$ 和 $\lg^*(\lg n) = \Theta(\lg g(n))$,因此我们只需要比较 $f(n)$ 和 $g(n)$ 的增长速度即可。
根据定义,对数幂函数 $f(n)$ 表示在连续对数的情况下,最后得到的结果为 1 所需的次数。而对数幂函数 $g(n)$ 表示对数字 $n$ 进行重复对数直到结果小于或等于 1 的次数。因此,$\lg^(\lg n)$ 可以看作是 $\log$ 函数的反函数,而 $\lg(\lg^ n)$ 则表示连续应用反函数的次数。
由于反函数的增长速度要快于原函数,因此可以推断出 $\lg^(\lg n)$ 的增长速度要快于 $\lg(\lg^ n)$,也就是说 $\lg^*(\lg n)$ 是渐进更大的函数。
因此,$\lg^(\lg n)$ 的渐进增长速度要快于 $\lg(\lg^ n)$。

文心一言 VS chatgpt (15)-- 算法导论3.2 4~5题的更多相关文章
- 【个人首测】百度文心一言 VS ChatGPT GPT-4
昨天我写了一篇文章GPT-4牛是牛,但这几天先别急,文中我测试了用GPT-4回答ChatGPT 3.5 和 Notion AI的问题,大家期待的图片输入也没有出现. 昨天下午百度发布了文心一言,对标C ...
- 获取了文心一言的内测及与其ChatGPT、GPT-4 对比结果
百度在3月16日召开了关于文心一言(知识增强大语言模型)的发布会,但是会上并没现场展示demo.如果要测试的文心一言 也要获取邀请码,才能进行测试的. 我这边通过预约得到了邀请码,大概是在3月17日晚 ...
- 【对比】文心一言对飚ChatGPT实操对比体验
前言 缘由 百度[文心一言]体验申请通过 本狗中午干饭时,天降短信,告知可以体验文心一言,苦等一个月的实操终于到来.心中这好奇的对比心理油然而生,到底是老美的[ChatGPT]厉害,还是咱度娘的[文心 ...
- 阿里版ChatGPT:通义千问pk文心一言
随着 ChatGPT 热潮卷起来,百度发布了文心一言.Google 发布了 Bard,「阿里云」官方终于也宣布了,旗下的 AI 大模型"通义千问"正式开启测试! 申请地址:http ...
- 文心一言,通营销之学,成一家之言,百度人工智能AI大数据模型文心一言Python3.10接入
"文心"取自<文心雕龙>一书的开篇,作者刘勰在书中引述了一个古代典故:春秋时期,鲁国有一位名叫孔文子的大夫,他在学问上非常有造诣,但是他的儿子却不学无术,孔文子非常痛心 ...
- 百度生成式AI产品文心一言邀你体验AI创作新奇迹:百度CEO李彦宏详细透露三大产业将会带来机遇(文末附文心一言个人用户体验测试邀请码获取方法,亲测有效)
目录 中国版ChatGPT上线发布 强大中文理解能力 智能文学创作.商业文案创作 图片.视频智能生成 中国生成式AI三大产业机会 新型云计算公司 行业模型精调公司 应用服务提供商 总结 获取文心一言邀 ...
- 【转】最长回文子串的O(n)的Manacher算法
Manacher算法 首先:大家都知道什么叫回文串吧,这个算法要解决的就是一个字符串中最长的回文子串有多长.这个算法可以在O(n)的时间复杂度内既线性时间复杂度的情况下,求出以每个字符为中心的最长回文 ...
- 算法导论课后习题解答 第一部分 练习1.1-1->1.1-5
很高兴能和大家一起共同学习算法导论这本书.笔者将在业余时间把算法导论后面的题解以博文的形式展现出来希望能得到大家的支持谢谢.如果有可能我会做一些教学视频免费的供大家观看. 练习题选自算法导论中文第三版 ...
- 《算法导论》— Chapter 15 动态规划
序 算法导论一书的第四部分-高级设计和分析技术从本章开始讨论,主要分析高效算法的三种重要技术:动态规划.贪心算法以及平摊分析三种. 首先,本章讨论动态规划,它是通过组合子问题的解而解决整个问题的,通常 ...
- 文心大模型api使用
文心大模型api使用 首先,我们要获取硅谷社区的连个key 复制两个api备用 获取Access Token 获取access_token示例代码 之后就会输出 作文创作 作文创作:作文创作接口基于文 ...
随机推荐
- DOC命令学习(一)
DOC命令学习(一) 命令 切换目录命令(cd) cd /d E: 查看目录命令(dir) dir #查看# 回显命令(echo) @echo offset d = %date:~0,10%set ...
- SQLServer游标(Cursor)简单例子
DECLARE @username nvarchar(50),@password nvarchar(50),@num int--声明游标变量 DECLARE myCursor CURSOR FOR s ...
- Mongodb between 时间范围
db.getCollection("Order").find({ "Supplier.ServiceCode": "CNI", " ...
- 解决Selenium元素拖拽不生效Bug
转载请注明出处️ 作者:测试蔡坨坨 原文链接:caituotuo.top/e8aa6c6f.html 你好,我是测试蔡坨坨. 前几天在使用Selenium进行元素拖拽操作时,发现Selenium自带的 ...
- 一个.Net Core开源缓存中间件,让你更加简单、方便使用缓存
上次给大家推荐过一个缓存中间件<一个C#开发的非常实用的缓存中间件>,今天再给大家推荐一个缓存中间件,两者功能差不多,都是提供统一接口.多级缓存.分布式缓存.支持多种Provider等. ...
- 基于 Gitlab + Harbor + K8s + Kuboard 的 CI 实践
CI/CD 概念 CI/CD 是一种通过在应用开发阶段引入自动化来频繁向客户交付应用的方法.CI/CD 的核心概念是持续集成.持续交付和持续部署.作为一种面向开发和运维团队的解决方案,CI/CD 主要 ...
- PMP常见会议小结
转载请注明出处: 会议是吸引项目团队和其他干系人参与的重要方式.它们是整个项目的主要沟通方式. 一. 项目启动会 召开时间:是启动阶段结束时召开的会议. 主要任务:发布项目章程,并任命项目经理,赋予项 ...
- ChatGPT能给IOT行业带来哪些改变
引言 随着移动互联网.传感器的发展,移动互联的潮流逐渐转移到物联网行业,每个设备成为了物联网连接的终端. 与传统的设备相比,智能设备最突出的特点就是智能化.目前,在市场上的智能设备通过智能程序设定或者 ...
- 配置 RSTP
实验1-5-2 配置 RSTP [实验名称] 配置 RSTP. [实验目的] 理解快速生成树协议 RSTP 的配置及原理. [背景描述] 某学校为了开展计算机教学和网络办公,建立了一个计算机教室和一个 ...
- 微前端框架single-spa子应用加载解析
作者:京东物流 宁冲 1 前言 什么是微前端? 微前端是指存在于浏览器中的微服务. 本文主要通过对微前端框架single-spa的基座应用加载子应用的single-spa-vue函数库进行分析,通过代 ...